Journal of Cryptology

, Volume 30, Issue 1, pp 1–21 | Cite as

Weak Locking Capacity of Quantum Channels Can be Much Larger Than Private Capacity

Article

Abstract

We show that it is possible for the so-called weak locking capacity of a quantum channel (Guha et al. in Phys Rev X 4:011016, 2014) to be much larger than its private capacity. Both reflect different ways of capturing the notion of reliable communication via a quantum system while leaking almost no information to an eavesdropper; the difference is that the latter imposes an intrinsically quantum security criterion whereas the former requires only a weaker, classical condition. The channels for which this separation is most straightforward to establish are the complementary channels of classical-quantum (cq-)channels and, hence, a subclass of Hadamard channels. We also prove that certain symmetric channels (related to photon number splitting) have positive weak locking capacity in the presence of a vanishingly small pre-shared secret, whereas their private capacity is zero. These findings are powerful illustrations of the difference between two apparently natural notions of privacy in quantum systems, relevant also to quantum key distribution: the older, naïve one based on accessible information, contrasting with the new, composable one embracing the quantum nature of the eavesdropper’s information. Assuming an additivity conjecture for constrained minimum output Rényi entropies, the techniques of the first part demonstrate a single-letter formula for the weak locking capacity of complements to cq-channels, coinciding with a general upper bound of Guha et al. for these channels. Furthermore, still assuming this additivity conjecture, this upper bound is given an operational interpretation for general channels as the maximum weak locking capacity of the channel activated by a suitable noiseless channel.

Keywords

Quantum channel Private capacity Quantum key distribution Accessible information Composability Locking capacity 

Notes

Acknowledgments

I thank Mark Wilde for enlightening discussions on information locking, for introducing me to locking capacities and for first raising the problem of separating the private capacity from the weak locking capacity. The keen interest he and Saikat Guha took in this project helped immensely to develop the ideas of the present paper. This research was supported by the European Commission (STREP “RAQUEL”), the European Research Council (Advanced Grant “IRQUAT”) and the Spanish MINECO (project FIS2008-01236) with FEDER funds. Part of this work was done during the program “Mathematical Challenges in Quantum Information” (MQI), 27/8-20/12/2013, at the Isaac Newton Institute in Cambridge, whose hospitality during the semester is gratefully acknowledged.

References

  1. 1.
    R. Alicki, M. Fannes, Continuity of quantum conditional information. J. Phys. A: Math. Gen. 37, L55–L57 (2004)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    S. Arimoto, Information measures and capacity of order \(\alpha \) for discrete memoryless channels, in: Topics in Information Theory—2nd Colloquium, Colloq. Math. Soc. J. Bolyai 16, pp. 41–52, I. Csiszár and P. Elias (eds.), North Holland, Amsterdam, 1977Google Scholar
  3. 3.
    M.A. Ballester, S. Wehner, A. Winter, State Discrimination With Post-Measurement Information. IEEE Trans. Inf. Theory 54(9), 4183–4198 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824–3851 (1996)MathSciNetCrossRefGoogle Scholar
  5. 5.
    N. Cai, A. Winter, R.W. Yeung, Quantum Privacy and Quantum Wiretap Channels. Probl. Inf. Transm. 40(4), 318–336 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    M. Christandl, A. Ekert, M. Horodecki, P. Horodecki, J. Oppenheim, R. Renner, Unifying Classical and Quantum Key Distillation, in: Proc. TCC 2007, LNCS 4392, pp. 456–478, Springer Verlag, Berlin, 2007; arXiv:quant-ph/0608199
  7. 7.
    I. Damgaard, S. Fehr, R. Renner, L. Salvail, C. Schaffner, A Tight High-Order Entropic Quantum Uncertainty Relation with Applications, in: Proc. CRYPTO 2007, LNCS 4622, pp. 360–378, Springer Verlag, Berlin, 2007; arXiv:quant-ph/0612014
  8. 8.
    I. Devetak, The Private Classical Capacity and Quantum Capacity of a Quantum Channel. IEEE Trans. Inf. Theory 51(1), 44–55 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    I. Devetak, P.W. Shor, The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information. Commun. Math. Phys. 256(2), 287–303 (2005)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    D.P. DiVincenzo, M. Horodecki, D.W. Leung, J.A. Smolin, B.M. Terhal, Locking classical correlations in quantum states. Phys. Rev. Lett. 92, 067902 (2004)CrossRefGoogle Scholar
  11. 11.
    O. Fawzi, P. Hayden, P. Sen, From Low-Distortion Norm Embeddings to Explicit Uncertainty Relations and Efficient Information Locking, J. ACM 60(6), article no. 44, 2013Google Scholar
  12. 12.
    S. Guha, P. Hayden, H. Krovi, S. Lloyd, C. Lupo, J.H. Shapiro, M. Takeoka, M.M. Wilde, Quantum enigma machines and the locking capacity of a quantum channel. Phys. Rev. X 4, 011016 (2014)Google Scholar
  13. 13.
    P. Hayden, D. Leung, P.W. Shor, A. Winter, Randomizing Quantum States: Constructions and Applications. Commun. Math. Phys. 250, 371–391 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    A.S. Holevo, Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Inf. Transm. 9(3), 177–183 (1973)Google Scholar
  15. 15.
    A.S. Holevo, Problems in the mathematical theory of quantum communication channels. Rep. Math. Phys. 12(2), 273–278 (1977)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    A.S. Holevo, Multiplicativity of p-norms of completely positive maps and the additivity problem in quantum information theory. Russian Math. Surveys 61(2), 301–339 (2006)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    B. Huttner, N. Imoto, N. Gisin, T. Mor, Quantum cryptography with coherent states. Phys. Rev. A 51(3), 1863–1869 (1995)CrossRefGoogle Scholar
  18. 18.
    C. King, Maximization of capacity and \(\ell _p\) norms for some product channels. J. Math. Phys. 43(3), 1247–1260 (2002)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    C. King, Maximal p-norms of entanglement breaking channels. Quantum. Inf. Comput. 3(2), 186–190 (2003)MathSciNetMATHGoogle Scholar
  20. 20.
    C. King, K. Matsumoto, M. Nathanson, M.-B. Ruskai, Properties of conjugate channels with applications to additivity and multiplicativity. Markov Proc. Rel. Fields 13(2), 391–423 (2007)MathSciNetMATHGoogle Scholar
  21. 21.
    R. Koenig, R. Renner, A. Bariska, U. Maurer, Small Accessible Quantum Information Does Not Imply Security. Phys. Rev. Lett. 98, 140502 (2007)CrossRefGoogle Scholar
  22. 22.
    E.H. Lieb, M.B. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14(12), 1938–1941 (1973)MathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Lloyd, Quantum enigma machines, arXiv:1307.0380 [quant-ph], 2013
  24. 24.
    C. Lupo, S. Lloyd, Quantum data locking for high-rate private communication. New J. Phys. 17, 033022 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    H. Maassen, J.B.M. Uffink, Generalized Entropic Uncertainty Relations. Phys. Rev. Lett. 60(12), 1103–1106 (1988)MathSciNetCrossRefGoogle Scholar
  26. 26.
    D. Mayers, Unconditional Security in Quantum Cryptography. J. ACM 48(3), 351–406 (2001)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, M. Tomamichel, On quantum Rényi entropies: A new generalization and some properties. J. Math. Phys. 54, 122203 (2013)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    R. Renner, Security of Quantum Key Distribution, PhD thesis, ETH Zürich, 2005. arXiv:quant-ph/0512258
  29. 29.
    R. Renner and S. Wolf, Smooth Rényi entropy and applications, in: Proc. ISIT 2004, p. 232, 2004Google Scholar
  30. 30.
    V. Scarani, H. Bechmann-Pasquinucci, N.J. Cerf, M. Dus̆ek, N. Lütkenhaus, M. Peev, The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301–1350 (2009)CrossRefGoogle Scholar
  31. 31.
    M. Sion, On General Minimax Theorems. Pacific J. Math. 8(1), 171–176 (1957)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    G. Smith, Private classical capacity with a symmetric side channel and its application to quantum cryptography. Phys. Rev. A 78, 022306 (2008)CrossRefGoogle Scholar
  33. 33.
    M. Tomamichel, R. Colbeck, R. Renner, A Fully Quantum Asymptotic Equipartition Property. IEEE Trans. Inf. Theory 55(12), 5840–5847 (2009)MathSciNetCrossRefGoogle Scholar
  34. 34.
    M. Tomamichel, A Framework for Non-Asymptotic Quantum Information Theory, PhD thesis, ETH Zürich, 2012. arXiv:1203.2142 [quant-ph]
  35. 35.
    S. P. Vadhan, Pseudorandomness, draft, 2013. http://people.seas.harvard.edu/~salil/pseudorandomness/
  36. 36.
    J. von Neumann, Zur Theorie der Gesellschaftsspiele. Math. Ann. 100, 295–320 (1928)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    S. Wehner, A. Winter, Entropic uncertainty relations–a survey. New J. Phys. 12(2), 025009 (2010)MathSciNetCrossRefGoogle Scholar
  38. 38.
    A.D. Wyner, The Wire-Tap Channel. Bell Syst. Tech. J. 54(6), 1355–1387 (1975)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  1. 1.ICREA and Física Teòrica: Informació i Fenomens QuànticsUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations