Journal of Cryptology

, Volume 24, Issue 3, pp 446–469 | Cite as

Endomorphisms for Faster Elliptic Curve Cryptography on a Large Class of Curves

Article

Abstract

Efficiently computable homomorphisms allow elliptic curve point multiplication to be accelerated using the Gallant–Lambert–Vanstone (GLV) method. Iijima, Matsuo, Chao and Tsujii gave such homomorphisms for a large class of elliptic curves by working over \({\mathbb{F}}_{p^{2}}\). We extend their results and demonstrate that they can be applied to the GLV method.

In general we expect our method to require about 0.75 the time of previous best methods (except for subfield curves, for which Frobenius expansions can be used). We give detailed implementation results which show that the method runs in between 0.70 and 0.83 the time of the previous best methods for elliptic curve point multiplication on general curves.

Key words

Elliptic curves Point multiplication GLV method Multiexponentiation Isogenies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Antipa, D.R.L. Brown, R.P. Gallant, R.J. Lambert, R. Struik, S.A. Vanstone, Accelerated verification of ecdsa signatures, in SAC 2005, ed. by B. Preneel, S.E. Tavares. LNCS, vol. 3879 (Springer, Berlin, 2006), pp. 307–318 Google Scholar
  2. [2]
    R. Avanzi, Aspects of hyperelliptic curves over large prime fields in software implementations, in CHES 2004, ed. by M. Joye, J.-J. Quisquater. LNCS, vol. 3156 (Springer, Berlin, 2004), pp. 148–162 Google Scholar
  3. [3]
    R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, F. Vercauteren, Handbook of Elliptic and Hyperelliptic Curve Cryptography (Chapman and Hall/CRC, London, Boca Raton, 2006) MATHGoogle Scholar
  4. [4]
    D.J. Bernstein, Curve25519: new Diffie–Hellman speed records, in PKC 2006, ed. by M. Yung et al. LNCS, vol. 3958 (Springer, Berlin, 2006), pp. 207–228 Google Scholar
  5. [5]
    D.J. Bernstein, Differential addition chains, preprint (2006). http://cr.yp.to/papers.html#diffchain
  6. [6]
    D.J. Bernstein, Elliptic vs. hyperelliptic, part 1 ECC 2006, Toronto, Canada. http://www.cacr.math.uwaterloo.ca/conferences/2006/ecc2006/slides.html
  7. [7]
    D.J. Bernstein, T. Lange, Faster addition and doubling on elliptic curves, in Asiacrypt 2007, ed. by K. Kurosawa. LNCS, vol. 4833 (Springer, Berlin, 2007), pp. 29–50 CrossRefGoogle Scholar
  8. [8]
    D.J. Bernstein, T. Lange, Inverted Edwards coordinates, in AAECC 2007, ed. by S. Boztas, H.-F. Lu. LNCS, vol. 4851 (Springer, Berlin, 2007), pp. 20–27 Google Scholar
  9. [9]
    D.J. Bernstein, T. Lange, Analysis and optimization of elliptic-curve single-scalar multiplication, in Finite Fields and Applications: Proceedings of Fq8. Contemporary Mathematics, vol. 461 (Am. Math. Soc., Providence, 2008), pp. 1–18 Google Scholar
  10. [10]
    D.J. Bernstein, P. Birkner, M. Joye, T. Lange, C. Peters, Twisted Edwards curves, in Africacrypt 2008, ed. by S. Vaudenay. LNCS, vol. 5023 (Springer, Berlin, 2008), pp. 389–405 CrossRefGoogle Scholar
  11. [11]
    I. Blake, G. Seroussi, N.P. Smart (eds.), Elliptic Curves in Cryptography (Cambridge University Press, Cambridge, 1999) MATHGoogle Scholar
  12. [12]
    eBATS: ECRYPT benchmarking of asymmetric systems, http://www.ecrypt.eu.org/ebats/
  13. [13]
    D.J. Bernstein, T. Lange (eds.), eBACS: ECRYPT benchmarking of cryptographic systems, http://bench.cr.yp.to/, accessed 9 January 2009
  14. [14]
    D.R.L. Brown, Multi-dimensional Montgomery ladders for elliptic curves, eprint 2006/220. http://www.eprint.iacr.org/2006/220
  15. [15]
    E. Dahmen, K. Okeya, D. Schepers, Affine precomputation with sole inversion in elliptic curve cryptography, in ACISP 2007, ed. by J. Pieprzyk, H. Ghodosi, E. Dawson. LNCS, vol. 4586 (Springer, Berlin, 2007), pp. 245–258 Google Scholar
  16. [16]
    I.M. Duursma, P. Gaudry, F. Morain, Speeding up the discrete log computation on curves with automorphisms, in ASIACRYPT 1999, ed. by K.-Y. Lam, E. Okamoto, C. Xing. LNCS, vol. 1716 (Springer, Berlin, 1999), pp. 103–121 Google Scholar
  17. [17]
    H.M. Edwards, A normal form for elliptic curves. Bull. Am. Math. Soc. 44, 393–422 (2007) CrossRefMATHGoogle Scholar
  18. [18]
    S.D. Galbraith, M. Scott, Exponentiation in pairing-friendly groups using homomorphisms, in Pairing 2008, ed. by S.D. Galbraith, K.G. Paterson. LNCS, vol. 5209 (Springer, Berlin, 2008), pp. 211–224 CrossRefGoogle Scholar
  19. [19]
    S.D. Galbraith, X. Lin, M. Scott, Endomorphisms for faster elliptic curve cryptography on a large class of curves, in EUROCRYPT 2009, ed. by A. Joux. LNCS, vol. 5479 (Springer, Berlin, 2009), pp. 518–535 CrossRefGoogle Scholar
  20. [20]
    R.P. Gallant, R.J. Lambert, S.A. Vanstone, Improving the parallelized Pollard lambda search on anomalous binary curves. Math. Comput. 69, 1699–1705 (2000) MATHMathSciNetGoogle Scholar
  21. [21]
    R.P. Gallant, R.J. Lambert, S.A. Vanstone, Faster point multiplication on elliptic curves with efficient endomorphisms, in CRYPTO 2001, ed. by J. Kilian. LNCS, vol. 2139 (Springer, Berlin, 2001), pp. 190–200 CrossRefGoogle Scholar
  22. [22]
    P. Gaudry, Index calculus for Abelian varieties of small dimension and the elliptic curve discrete logarithm problem. J. Symb. Comput. 44(12), 1690–1702 (2009) CrossRefMATHMathSciNetGoogle Scholar
  23. [23]
    P. Gaudry, E. Thomé, The mpFq library and implementing curve-based key exchanges, SPEED workshop presentation, Amsterdam, June 2007. www.hyperelliptic.org/SPEED/record.pdf
  24. [24]
    P. Gaudry, E. Thomé, N. Thériault, C. Diem, A double large prime variation for small genus hyperelliptic index calculus. Math. Comput. 76(257), 475–492 (2007) CrossRefMATHGoogle Scholar
  25. [25]
    P. Gaudry, E. Schost, Hyperelliptic curve point counting record: 254 bit Jacobian, post to NMBRTHRY list, 22 Jun 2008. http://www.loria.fr/gaudry/record127/
  26. [26]
    R. Granger, On the static Diffie–Hellman problem on elliptic curves over extension fields, eprint 2010/177 Google Scholar
  27. [27]
    D. Hankerson, A.J. Menezes, S. Vanstone, Guide to Elliptic Curve Cryptography (Springer, Berlin, 2004) MATHGoogle Scholar
  28. [28]
    D. Hankerson, K. Karabina, A.J. Menezes, Analyzing the Galbraith-Lin-Scott point multiplication method for elliptic curves over binary fields. IEEE Trans. Comput. 58(10), 1411–1420 (2009) CrossRefMathSciNetGoogle Scholar
  29. [29]
    F. Hess, N. Smart, F. Vercauteren, The eta-pairing revisited. IEEE Trans. Inf. Theory 52(10), 4595–4602 (2006) CrossRefMATHMathSciNetGoogle Scholar
  30. [30]
    T. Iijima, K. Matsuo, J. Chao, S. Tsujii, Construction of Frobenius maps of twist elliptic curves and its application to elliptic scalar multiplication, in SCIS 2002, IEICE Japan, January 2002, pp. 699–702 Google Scholar
  31. [31]
    D. Kim, S. Lim, Integer decomposition for fast scalar multiplication on elliptic curves, in SAC 2002, ed. by K. Nyberg, H. Heys. LNCS, vol. 2595 (Springer, Berlin, 2003), pp. 13–20 Google Scholar
  32. [32]
    S. Kozaki, K. Matsuo, Y. Shimbara, Skew-Frobenius maps on hyperelliptic curves. IEICE Trans. E91-A(7), 1839–1843 (2008) CrossRefGoogle Scholar
  33. [33]
    P. Longa, A. Miri, New composite operations and precomputation scheme for elliptic curve cryptosystems over prime fields, in PKC 2008, ed. by R. Cramer. LNCS, vol. 4939 (Springer, Berlin, 2008), pp. 229–247 Google Scholar
  34. [34]
    B. Möller, Algorithms for multi-exponentiation, in SAC 2001, ed. by S. Vaudenay, A.M. Youssef. LNCS, vol. 2259 (Springer, Berlin, 2001), pp. 165–180 Google Scholar
  35. [35]
    B. Möller, Improved techniques for fast exponentiation, in ICISC 2002, ed. by P. Lee, C. Lim. LNCS, vol. 2587 (Springer, Berlin, 2003), pp. 298–312 Google Scholar
  36. [36]
    B. Möller, Fractional windows revisited: improved signed-digit representations for efficient exponentiation, in ICISC 2004, ed. by C. Park, S. Chee. LNCS, vol. 3506 (Springer, Berlin, 2005), pp. 137–153 Google Scholar
  37. [37]
    B. Möller, A. Rupp, Faster multi-exponentiation through caching: accelerating (EC)DSA signature verification, in SCN 2008, ed. by R. Ostrovsky, R. De Prisco, I. Visconti. LNCS, vol. 5229 (Springer, Berlin, 2008), pp. 39–56 Google Scholar
  38. [38]
    P.L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization. Math. Comput. 47, 243–264 (1987) Google Scholar
  39. [39]
    Y. Nogami, Y. Morikawa, Fast generation of elliptic curves with prime order over extension field of even extension degree, in Proceedings 2003 IEEE International Symposium on Information Theory (2003), p. 18 Google Scholar
  40. [40]
    Y. Nogami, Y. Morikawa, Fast generation of elliptic curves with prime order over \({\mathbb{F}}_{p^{2^{c}}}\). Workshop on Coding and Cryptography (WCC2003) (2003), pp. 347–356 Google Scholar
  41. [41]
    Y.-H. Park, S. Jeong, C.H. Kim, J. Lim, An alternate decomposition of an integer for faster point multiplication on certain elliptic curves, in PKC 2002, ed. by D. Naccache, P. Paillier. LNCS, vol. 2274 (Springer, Berlin, 2002), pp. 323–334 Google Scholar
  42. [42]
    A.G. Rostovtsev, E.B. Markovenko, Elliptic curve point multiplication, in MMM-ACNS 2003, ed. by V. Gorodetsky. LNCS, vol. 2776 (Springer, Berlin, 2003), pp. 328–336 Google Scholar
  43. [43]
    K. Schmidt-Samoa, O. Semay, T. Takagi, analysis of fractional window recoding methods and their application to elliptic curve cryptosystems. IEEE Trans. Comput. 55(1), 48–57 (2006) CrossRefGoogle Scholar
  44. [44]
    M. Scott, MIRACL—multiprecision integer and rational arithmetic C/C++ library, http://ftp.computing.dcu.ie/pub/crypto/miracl.zip (2008)
  45. [45]
    M. Scott, P. Szczechowiak, Optimizing multiprecision multiplication for public key cryptography, eprint 2007/299. http://eprint.iacr.org/2007/299
  46. [46]
    F. Sica, M. Ciet, J.-J. Quisquater, Analysis of the Gallant–Lambert–Vanstone method based on efficient endomorphisms: elliptic and hyperelliptic curves, in SAC 2002, ed. by K. Nyberg, H.M. Heys. LNCS, vol. 2595 (Springer, Berlin, 2003), pp. 21–36 Google Scholar
  47. [47]
    J.H. Silverman, The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 106 (Springer, Berlin, 1986) MATHGoogle Scholar
  48. [48]
    J.A. Solinas, Efficient arithmetic on Koblitz curves. Designs Codes and Cryptogr. 19(2–3), 195–249 (2000) CrossRefMATHMathSciNetGoogle Scholar
  49. [49]
    J.A. Solinas, Low-weight binary representations for pairs of integers. Technical Report CORR 2001–41, CACR (2001) Google Scholar
  50. [50]
    M.J. Wiener, R.J. Zuccherato, Faster attacks on elliptic curve cryptosystems, in SAC 1998, ed. by S. Tavares, H. Meijer. LNCS, vol. 1556 (Springer, Berlin, 1999), pp. 190–200 Google Scholar

Copyright information

© International Association for Cryptologic Research 2010

Authors and Affiliations

  • Steven D. Galbraith
    • 1
  • Xibin Lin
    • 2
  • Michael Scott
    • 3
  1. 1.Mathematics DepartmentAuckland UniversityAucklandNew Zealand
  2. 2.School of Mathematics and Computational ScienceSun Yat-Sen UniversityGuangzhouP.R. China
  3. 3.School of ComputingDublin City UniversityDublin 9Ireland

Personalised recommendations