Journal of Cryptology

, Volume 23, Issue 3, pp 402–421 | Cite as

Parallel and Concurrent Security of the HB and HB+ Protocols

Article

Abstract

Hopper and Blum (Asiacrypt 2001) and Juels and Weis (Crypto 2005) recently proposed two shared-key authentication protocols—HB and HB+, respectively—whose extremely low computational cost makes them attractive for low-cost devices such as radio-frequency identification (RFID) tags. The security of these protocols is based on the conjectured hardness of the “learning parity with noise” (LPN) problem, which is equivalent to the problem of decoding random binary linear codes. The HB protocol is proven secure against a passive (eavesdropping) adversary, while the HB+ protocol is proven secure against active attacks.

Key words

Authentication protocols RFID Learning parity with noise 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Bellare, R. Impagliazzo, M. Naor. Does parallel repetition lower the error in computationally sound protocols?, in 38th IEEE Symposium on Foundations of Computer Science (IEEE, New York, 1997), pp. 374–383 Google Scholar
  2. [2]
    E.R. Berlekamp, R.J. McEliece, H.C.A. van Tilborg, On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24, 384–386 (1978) MATHCrossRefGoogle Scholar
  3. [3]
    A. Blum, M. Furst, M. Kearns, R. Lipton, Cryptographic primitives based on hard learning problems, in Adv. in Cryptology—Crypto’93. LNCS, vol. 773 (Springer, Berlin, 1994), pp. 278–291 Google Scholar
  4. [4]
    A. Blum, A. Kalai, H. Wasserman, Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM 50(4), 506–519 (2003) CrossRefMathSciNetGoogle Scholar
  5. [5]
    J. Bringer, H. Chabanne, E. Dottax, HB++: A lightweight authentication protocol secure against some attacks, in Proceedings of SecPerU 2006, ed. by P. Georgiadis, J. Lopez, S. Gritzalis, G. Marias (IEEE Computer Society Press, Los Alamitos, 2006), pp. 28–33 Google Scholar
  6. [6]
    R. Canetti, J. Kilian, E. Petrank, A. Rosen, Black-box concurrent zero-knowledge requires (almost) logarithmically many rounds. SIAM J. Comput. 32(1), 1–47 (2002) MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    R. Canetti, S. Halevi, M. Steiner. Hardness amplification of weakly verifiable puzzles, in 2nd Theory of Cryptography Conference (TCC 2005). LNCS, vol. 3378 (Springer, Berlin, 2005), pp. 17–33 Google Scholar
  8. [8]
    F. Chabaud, On the security of some cryptosystems based on error-correcting codes, in Adv. in Cryptology—Eurocrypt ’94. LNCS, vol. 950 (Springer, Berlin, 1995), pp. 131–139 Google Scholar
  9. [9]
    D.N. Duc, K. Kim, HB+ Securing against GRS man-in-the-middle attack, in Institute of Electronics, Information and Communication Engineers, Symposium on Cryptography and Information Security, Jan. 23–26, 2007 Google Scholar
  10. [10]
    U. Feige, A. Shamir, Witness indistinguishability and witness hiding protocols, in 22nd ACM Symposium on Theory of Computing (ACM, New York, 1990), pp. 416–426 Google Scholar
  11. [11]
    M. Fossorier, M.J. Mihaljevic, H. Imai, Y. Cui, K. Matsuura, An algorithm for solving the LPN problem and its application to security evaluation of the HB protocols for RFID authentication, in Progress in Cryptology—INDOCRYPT 2006. LNCS, vol. 4329 (Springer, Berlin, 2006), pp. 48–62 CrossRefGoogle Scholar
  12. [12]
    H. Gilbert, M. Robshaw, H. Silbert, An active attack against HB+: A provably secure lightweight authentication protocol. IEE Electron. Lett. 41(21), 1169–1170 (2005) CrossRefGoogle Scholar
  13. [13]
    H. Gilbert, M.J.B. Robshaw, Y. Seurin, Good variants of HB+ are hard to find, in Financial Cryptography and Data Security, FC 2008. LNCS, vol. 5143 (Springer, Berlin, 2008), pp. 156–170 CrossRefGoogle Scholar
  14. [14]
    H. Gilbert, M.J.B. Robshaw, Y. Seurin, HB#: Increasing the security and efficiency of HB+, in Adv. in Cryptology—EUROCRYPT 2008. LNCS, vol. 4965 (Springer, Berlin, 2008), pp. 361–378 CrossRefGoogle Scholar
  15. [15]
    O. Goldreich, Modern Cryptography, Probabilistic Proofs, and Pseudorandomness (Springer, Berlin, 1998) Google Scholar
  16. [16]
    O. Goldreich, H. Krawczyk, On the composition of zero-knowledge proof systems. SIAM J. Comput. 25(1), 169–192 (1996) MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    O. Goldreich, Y. Oren, Definitions and properties of zero-knowledge proof systems. J. Cryptol. 7(1), 1–32 (1994) MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    O. Goldreich, N. Nisan, A. Wigderson, On Yao’s XOR-lemma. Available at http://eccc.uni-trier.de/eccc-reports/1995/TR95-050/
  19. [19]
    V. Guruswami, List Decoding of Error-Correcting Codes (Springer, Berlin, 2004) MATHGoogle Scholar
  20. [20]
    J. Håstad, Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001) MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    N. Hopper, M. Blum, A secure human-computer authentication scheme. Technical Report CMU-CS-00-139, Carnegie Mellon University, 2000 Google Scholar
  22. [22]
    N. Hopper, M. Blum, Secure human identification protocols, in Adv. in Cryptology—Asiacrypt 2001. LNCS, vol. 2248 (Springer, Berlin, 2001), pp. 52–66 CrossRefGoogle Scholar
  23. [23]
    S.M. Johnson, A new upper bound for error-correcting codes. IRE Trans. Inf. Theory 8(3), 203–207 (1962) CrossRefGoogle Scholar
  24. [24]
    S.M. Johnson, Improved asymptotic bounds for error-correcting codes. IEEE Trans. Inf. Theory 9(3), 198–205 (1963) MATHCrossRefGoogle Scholar
  25. [25]
    A. Juels, S. Weis, Authenticating pervasive devices with human protocols, in Adv. in Cryptology—Crypto 2005. LNCS, vol. 3621 (Springer, Berlin, 2005), pp. 293–308. Updated version available at: http://www.rsasecurity.com/rsalabs/staff/bios/ajuels/publications/pdfs/lpn.pdf Google Scholar
  26. [26]
    J. Katz, J.-S. Shin, Parallel and concurrent security of the HB and HB+ protocols, in Adv. in Cryptology—Eurocrypt 2006. LNCS, vol. 4004 (Springer, Berlin, 2006), pp. 73–87 CrossRefGoogle Scholar
  27. [27]
    J. Katz, A. Smith, Analyzing the HB and HB+ protocols in the “large error” case. Available at http://eprint.iacr.org/2006/326
  28. [28]
    M. Kearns, Efficient noise-tolerant learning from statistical queries. J. ACM 45(6), 983–1006 (1998) MATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    Z. Kfir, A. Wool, Picking virtual pockets using relay attacks on contactless smartcard systems. Available at http://eprint.iacr.org/2005/052
  30. [30]
    I. Kirschenbaum, A. Wool, How to build a low-cost, extended-range RFID skimmer. Available at http://eprint.iacr.org/2006/054
  31. [31]
    E. Levieil, P.-A. Fouque, An improved LPN algorithm, in Security and Cryptography for Networks (SCN 2006). LNCS, vol. 4116 (Springer, Berlin, 2006), pp. 348–359 CrossRefGoogle Scholar
  32. [32]
    V. Lyubashevsky, The parity problem in the presence of noise, decoding random linear codes, and the subset sum problem, in 9th Intl. Workshop on Randomization and Computation (RANDOM 2005). LNCS, vol. 3624 (Springer, Berlin, 2005), pp. 378–389 Google Scholar
  33. [33]
    J. Munilla, A. Peinado, HB-MP: A further step in the hb-family of lightweight authentication protocols. Comput. Netw. 51, 2262–2267 (2007) MATHCrossRefGoogle Scholar
  34. [34]
    R. Pass, M. Venkitasubramaniam, An efficient parallel repetition theorem for Arthur-Merlin games, in 39th ACM Symposium on Theory of Computing (ACM, New York, 2007), pp. 420–429 Google Scholar
  35. [35]
    C. Peikert, Public-key cryptosystems from the worst-case shortest vector problem, in 41st ACM Symposium on Theory of Computing (ACM, New York, 2009), pp. 333–342 CrossRefGoogle Scholar
  36. [36]
    R. Raz, A parallel repetition theorem. SIAM J. Comput. 27(3), 763–803 (1998) MATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    O. Regev, On lattices, learning with errors, random linear codes, and cryptography, in 37th ACM Symposium on Theory of Computing (ACM, New York, 2005), pp. 84–93 Google Scholar
  38. [38]
    A.C.-C. Yao, Theory and applications of trapdoor functions, in 23rd IEEE Symposium on Foundations of Computer Science (IEEE, New York, 1982), pp. 80–91 Google Scholar

Copyright information

© International Association for Cryptologic Research 2010

Authors and Affiliations

  1. 1.Dept. of Computer ScienceUniversity of MarylandCollege ParkUSA
  2. 2.Dept. of Computer Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations