, Volume 23, Issue 2, pp 15–18 | Cite as

The Luria-Delbrück distribution

Early statistical thinking about evolution
  • Zheng Qi


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. Crow, J. F. 1990. R. A. Fisher, a centennial view, Genetics, 124:207–11.Google Scholar
  2. Griffiths, A. J. F., Wessler, S. R., Lewontin, R. C., and Carroll, S. B. 2007. Introduction to genetic analysis, 9th ed. New York: W. H. Freeman and Co.Google Scholar
  3. Johnson, N. L., Kemp, A. W., and Kotz, S. 2005. Univariate discrete distributions, 3rd ed. Hoboken, NJ: Wiley.zbMATHGoogle Scholar
  4. Lea, E. A., and Coulson, C. A. 1949. The distribution of the numbers of mutants in bacterial populations. Journal of Genetics 49:264–85.CrossRefGoogle Scholar
  5. Luria, S. E. 1984. A slot machine, a broken test tube: An autobiography. New York: Harper & Row.Google Scholar
  6. Luria, S. E., and Delbrück, M. 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511.Google Scholar
  7. Ma, W. T., Sandri G. Vh. and Sarkar S. 1992. Analysis of the Luria-Delbrück distribution using discrete convolution powers. Journal of Applied Probability 19:255–267.CrossRefMathSciNetGoogle Scholar
  8. Rosche, W. A., and Foster, P. L. 2000. Determining mutation rates in bacterial populations. Methods 20:4–17.CrossRefGoogle Scholar
  9. Zheng, Q. 1999. Progress of a half century in the study of the Luria-Delbrück distribution. Mathematical Biosciences 162:1–32.zbMATHCrossRefMathSciNetGoogle Scholar
  10. Zheng, Q. 2005. New algorithms for Luria-Delbrück fluctuation analysis. Mathematical Biosciences 196:198–214.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© American Statistical Association 2010

Authors and Affiliations

  • Zheng Qi

There are no affiliations available

Personalised recommendations