Advertisement

Regeneration artikulärer Knorpeldefekte am Kniegelenk

Differenzialindikationen chirurgischer Techniken
  • F. Blanke
  • S. VogtEmail author
Leitthema
  • 40 Downloads

Zusammenfassung

Knorpelgewebe besitzt keine Fähigkeit zur Eigenregeneration, sodass die chirurgische Knorpeltherapie ein essenzielles Verfahren in der Behandlung von Knorpelschäden darstellt. Die Indikation richtet sich nicht nur nach der Größe und morphologischen Beschaffenheit des Schadens, sondern insbesondere nach der klinischen Symptomatik. Die Mikrofrakturierung stellt ein validiertes Verfahren für kleine Defekte dar, ist jedoch der autologen Chondrozytentransplantation (ACT/MACT) in der histologischen Qualität etwas unterlegen. Die ACT/MACT kann mittlerweile in offener und rein arthroskopischer Technik angewendet werden und ist der Mikrofrakturierung hinsichtlich der klinischen Behandlungsergebnisse ebenbürtig bzw. bei großen Defekten sogar überlegen. Nachteilig ist jedoch weiterhin das notwendige zweizeitige Verfahren. Zellfreie Behandlungsmethoden bieten daher als einzeitige Verfahren eine gute Alternative und zeigten in ersten Studien vielversprechende Ergebnisse. Systematische Langzeitstudien und randomisierte Studien sind jedoch notwendig, um das Potenzial dieser Behandlungsstrategien zu evaluieren und sie mit traditionellen Therapiealternativen suffizient vergleichen zu können. Begleitpathologien bzw. Risikofaktoren müssen in der chirurgischen Knorpeltherapie unbedingt beachtet und ggf. mit therapiert werden.

Schlüsselwörter

Knorpeltherapie Knorpelschaden Matrixgestützte autologe Chondrozytentransplantation Mikrofrakturierung Zellfreie Therapieverfahren 

Regeneration of articular chondral defects of the knee joint

Differential indications of surgical techniques

Abstract

Cartilage tissue does not have the ability for self-regeneration, making surgical cartilage treatment an essential procedure in the treatment of chondral damage. The indications are based not only on the size and morphological nature of the damage but also especially on the clinical symptoms. Microfracturing represents a validated procedure for small defects but is slightly inferior to autologous chondrocyte transplantation (ACT/MACT) in histological quality. The ACT/MACT can now be used in an open and purely arthroscopic technique and is equal to microfracturing in terms of clinical treatment results and even superior for large defects; however, the disadvantage is still the necessary 2‑step process. Cell-free treatment methods therefore offer a suitable alternative as a 1-step procedure and have shown promising results in initial studies. Systematic long-term studies and randomized trials are still needed to evaluate the potential of these treatment strategies and to sufficiently compare them with traditional alternative forms of treatment. Strict attention must be paid to concomitant pathologies and risk factors in surgical cartilage treatment and, if necessary, also be treated.

Keywords

Cartilage repair Chondral lesions Matrix-supported autologous chondrocyte transplantation Microfracturing Cell-free treatment procedures 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

F. Blanke und S. Vogt geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Brower TD, Hsu WY (1969) Normal articular cartilage. Clin Orthop Relat Res 64:9–17PubMedGoogle Scholar
  2. 2.
    Rath B et al (2017) Cartilage repair of the knee joint. Orthopade 46(11):919–927.  https://doi.org/10.1007/s00132-017-3463-x CrossRefPubMedGoogle Scholar
  3. 3.
    Devitt BM et al (2017) Surgical treatments of cartilage defects of the knee: systematic review of. Knee 24(3):508–517.  https://doi.org/10.1016/j.knee.2016.12.002 CrossRefPubMedGoogle Scholar
  4. 4.
    Schenker H et al (2017) Current overview of cartilage regeneration procedures. Orthopade 46(11):907–913.  https://doi.org/10.1007/s00132-017-3474-7 CrossRefPubMedGoogle Scholar
  5. 5.
    Huber M, Trattnig S, Lintner F (2000) Anatomy, biochemistry, and physiology of articular cartilage. Invest Radiol 35(10):573–580CrossRefGoogle Scholar
  6. 6.
    Welton KL et al (2018) Knee cartilage repair and restoration: common problems and solutions. Clin Sports Med 37(2):307–330.  https://doi.org/10.1016/j.csm.2017.12.008 CrossRefPubMedGoogle Scholar
  7. 7.
    Brittberg M et al (2016) Cartilage repair in the degenerative ageing knee. Acta Orthop 87(sup363):26–38.  https://doi.org/10.1080/17453674.2016.1265877 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Braun S, Vogt S, Imhoff AB (2007) Stage oriented surgical cartilage therapy. Current situation. Orthopade 36(6):589–599 (quiz 600)CrossRefGoogle Scholar
  9. 9.
    Knutsen G et al (2016) A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture. Findings at 14 to 15 years. J Bone Joint Surg Am 98(16):1332–1339.  https://doi.org/10.2106/JBJS.15.01208 CrossRefPubMedGoogle Scholar
  10. 10.
    Steadman JR et al (1999) The microfracture technic in the management of complete cartilage defects in the knee. Orthopade 28(1):26–32PubMedGoogle Scholar
  11. 11.
    Shapiro F, Koide S, Glimcher MJ (1993) Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 75(4):532–553CrossRefGoogle Scholar
  12. 12.
    Flanigan DC et al (2010) The effects of lesion size and location on subchondral bone contact in experimental knee articular cartilage defects in a bovine model. Arthroscopy 26(12):1655–1661.  https://doi.org/10.1016/j.arthro.2010.05.017 CrossRefPubMedGoogle Scholar
  13. 13.
    Knutsen G et al (2007) A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 89(10):2105–2112PubMedGoogle Scholar
  14. 14.
    Vanlauwe J et al (2011) Five-year outcome of characterized chondrocyte implantation versus microfracture. Am J Sports Med 39(12):2566–2574.  https://doi.org/10.1177/0363546511422220 CrossRefPubMedGoogle Scholar
  15. 15.
    Oussedik S, Tsitskaris K, Parker D (2015) Treatment of articular cartilage lesions of the knee by microfracture or autologous chondrocyte implantation: a systematic review. Arthroscopy 31(4):732–744.  https://doi.org/10.1016/j.arthro.2014.11.023 CrossRefPubMedGoogle Scholar
  16. 16.
    Aldrian S et al (2014) Clinical and radiological long-term outcomes after matrix-induced autologous chondrocyte transplantation: a prospective follow-up at a minimum of 10 years. Am J Sports Med 42(11):2680–2688.  https://doi.org/10.1177/0363546514548160 CrossRefPubMedGoogle Scholar
  17. 17.
    Nawaz SZ et al (2014) Autologous chondrocyte implantation in the knee: mid-term to long-term results. J Bone Joint Surg Am 96(10):824–830.  https://doi.org/10.2106/JBJS.L.01695 CrossRefPubMedGoogle Scholar
  18. 18.
    Zak L et al (2014) Results 2 years after matrix-associated autologous ahondrocyte transplantation using the Novocart 3D scaffold: an analysis of clinical and radiological data. Am J Sports Med 42(7):1618–1627.  https://doi.org/10.1177/0363546514532337 CrossRefPubMedGoogle Scholar
  19. 19.
    Brittberg M et al (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895CrossRefGoogle Scholar
  20. 20.
    Saris D et al (2014) Matrix-applied characterized autologous cultured chondrocytes versus microfracture: two-year follow-up of a prospective randomized trial. Am J Sports Med 42(6):1384–1394.  https://doi.org/10.1177/0363546514528093 CrossRefPubMedGoogle Scholar
  21. 21.
    Crawford DC, DeBerardino TM, Williams RJ 3rd (2012) NeoCart, an autologous cartilage tissue implant, compared with microfracture for treatment of distal femoral cartilage lesions: an FDA phase-II prospective, randomized clinical trial after two years. J Bone Joint Surg Am 94(11):979–989.  https://doi.org/10.2106/JBJS.K.00533 CrossRefPubMedGoogle Scholar
  22. 22.
    Redondo ML, Beer AJ, Yanke AB (2018) Cartilage restoration: microfracture and osteochondral autograft transplantation. J Knee Surg 31(3):231–238.  https://doi.org/10.1055/s-0037-1618592 CrossRefPubMedGoogle Scholar
  23. 23.
    Gille J et al (2010) Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 18(11):1456–1464CrossRefGoogle Scholar
  24. 24.
    Schiavone Panni A, Cerciello S, Vasso M (2011) The manangement of knee cartilage defects with modified amic technique: preliminary results. Int J Immunopathol Pharmacol 24(1 Suppl 2):149–152CrossRefGoogle Scholar
  25. 25.
    Dhollander AA et al (2011) Autologous matrix-induced chondrogenesis combined with platelet-rich plasma gel: technical description and a five pilot patients report. Knee Surg Sports Traumatol Arthrosc 19(4):536–542CrossRefGoogle Scholar
  26. 26.
    Pascarella A et al (2010) Treatment of articular cartilage lesions of the knee joint using a modified AMIC technique. Knee Surg Sports Traumatol Arthrosc 18(4):509–513CrossRefGoogle Scholar
  27. 27.
    Kusano T et al (2012) Treatment of isolated chondral and osteochondral defects in the knee by autologous matrix-induced chondrogenesis (AMIC). Knee Surg Sports Traumatol Arthrosc 20(10):2109–2115CrossRefGoogle Scholar
  28. 28.
    Efe T et al (2012) Cell-free collagen type I matrix for repair of cartilage defects-clinical and magnetic resonance imaging results. Knee Surg Sports Traumatol Arthrosc 20(10):1915–1922CrossRefGoogle Scholar
  29. 29.
    Roessler PP et al (2015) Short-term follow up after implantation of a cell-free collagen type I matrix for the treatment of large cartilage defects of the knee. Int Orthop.  https://doi.org/10.1007/s00264-015-2695-9 CrossRefPubMedGoogle Scholar
  30. 30.
    Steinwachs MR, Waibl B, Mumme M (2014) Arthroscopic treatment of cartilage lesions with Microfracture and BST-cargel. Arthrosc Tech 3(3):e399–e402CrossRefGoogle Scholar
  31. 31.
    Stanish WD et al (2013) Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Joint Surg Am 95(18):1640–1650CrossRefGoogle Scholar
  32. 32.
    Shive MS et al (2015) BST-CarGel(R) treatment maintains cartilage repair superiority over Microfracture at 5 years in a Multicenter randomized controlled trial. Cartilage 6(2):62–72CrossRefGoogle Scholar
  33. 33.
    Methot S et al (2016) Osteochondral biopsy analysis demonstrates that BST-cargel treatment improves. Cartilage 7(1):16–28.  https://doi.org/10.1177/1947603515595837 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    McDonald LS et al (2016) ACL deficiency increases forces on the medial femoral condyle and the lateral meniscus. J Bone Joint Surg Am 98(20):1713–1721CrossRefGoogle Scholar
  35. 35.
    Siebold R, Karidakis G, Fernandez F (2014) Clinical outcome after medial patellofemoral ligament reconstruction and autologous chondrocyte implantation following recurrent patella dislocation. Knee Surg Sports Traumatol Arthrosc 22(10):2477–2483.  https://doi.org/10.1007/s00167-014-3196-x CrossRefPubMedGoogle Scholar
  36. 36.
    Goebel L, Reinhard J, Madry H (2017) Meniscal lesion. A pre-osteoarthritic condition of the knee joint. Orthopade 46(10):822–830.  https://doi.org/10.1007/s00132-017-3462-y CrossRefPubMedGoogle Scholar
  37. 37.
    Niethammer TR et al (2015) Bone Marrow Edema in the Knee and Its Influence on Clinical Outcome After Matrix-Based Autologous Chondrocyte Implantation: Results After 3‑Year Follow-up. Am J Sports Med 43(5):1172–1179.  https://doi.org/10.1177/0363546515573935 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Abteilung für Sportorthopädie und arthroskopische ChirurgieHessing Stiftung AugsburgAugsburgDeutschland

Personalised recommendations