Advertisement

Präoperative Patientenevaluation

Bildgebung, Indikationen und Limitationen zur knorpelregenerativen Therapie
  • Pia M. JungmannEmail author
Leitthema
  • 17 Downloads

Zusammenfassung

Die Bildgebung spielt eine essenzielle Rolle bei der Diagnostik von chondralen und osteochondralen Läsionen sowie im Rahmen der Indikationsstellung zur knorpelregenerativen Therapie. Symptomatische, lokalisierte, scharf umschriebene chondrale oder osteochondrale Läsionen (International Cartilage Repair Society [ICRS] Grad 3 oder 4) können eine Indikation zur knorpelregenerativen Therapie darstellen. Neben dem konventionellen Röntgen ist für die Beurteilung des Kniegelenks eine native Magnetresonanztomographie (MRT) meist ausreichend. Zur Beurteilung einer Dissekatlösung sowie für kleinere Gelenke wie das Sprunggelenk oder das Ellenbogengelenk kann eine CT-Arthrographie (CTA) oder MR-Arthrographie (MRA) indiziert sein. Neben der Beurteilung und Klassifikation des Knorpeldefekts ist auch eine Beurteilung des subchondralen Knochens unabkömmlich, da dieser im Rahmen osteochondraler Läsionen beteiligt sein kann und die Therapie möglicherweise angepasst werden muss. Neben den Patientencharakteristika wie Alter, Body-Mass-Index (BMI) und Aktivitätsniveau spielt die Bildgebung eine entscheidende Rolle bei der Entscheidung für die spezifische Technik der Knorpelchirurgie. Auch Begleitpathologien können in der Bildgebung erkannt werden, die entweder eine Kontraindikation für eine knorpelregenerative Therapie darstellen können (wie fortgeschrittene Arthrose) oder eine zusätzliche Therapie verlangen (wie z. B. Korrektur von Achsfehlstellungen, Bandrekonstruktionen etc.). Es wurde gezeigt, dass die Knorpelchirurgie eine klinische Verbesserung gegenüber präoperativen Befunden erreicht, und es gibt Hinweise darauf, dass sie die Progression zu einer Arthrose verzögern kann. Die Knorpelchirurgie weist jedoch auch Grenzen und Limitationen auf, die bei der Indikationsstellung beachtet werden müssen.

Schlüsselwörter

Gelenkknorpel Knochen Orthopädische Chirurgie Diagnostische Bildgebung Magnetresonanztomographie 

Preoperative patient evaluation

Imaging, indications and limitations of cartilage regeneration treatment

Abstract

Imaging plays an essential role in the diagnostics of chondral and osteochondral defects and with respect to indications for cartilage regenerative treatment. Symptomatic, localized and well-circumscribed cartilage defects or osteochondral defects (International Cartilage Regeneration & Joint Preservation Society, ICRS grade 3 or 4) may represent an indication for cartilage regenerative treatment. Apart from conventional radiography, native magnetic resonance imaging (MRI) is usually sufficient for evaluation of the knee joint. For evaluation of potential loosening of an osteochondral fragment and for other smaller joints, such as the elbow or the ankle, computed tomography arthrography (CTA) or MR arthrography (MRA) may be indicated. Apart from the evaluation and classification of the chondral defect, evaluation of the subchondral bone is also indispensable because this may be involved in cases of osteochondral lesions, which may influence the therapeutic strategy. Apart from patient characteristics, such as age, body mass index (BMI) and activity level, imaging plays an essential role when deciding on the specific cartilage repair technique. Furthermore, concomitant pathologies may also be detected on imaging, which may represent a contraindication regarding cartilage repair (e. g. advanced osteoarthritis) or may require additional therapy (e. g. correction of malalignment, ligament reconstruction etc.). It was demonstrated that cartilage repair results in clinical improvements as compared to preoperative findings and there are indications that progression to osteoarthritis may be delayed; however, cartilage repair surgery also has limits and limitations that need to be considered when deciding on the treatment strategy.

Keywords

Cartilage Bone Orthopedic surgery Diagnostic imaging Magnetic resonance imaging 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

P.M. Jungmann gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Barr C, Bauer JS, Malfair D et al (2007) MR imaging of the ankle at 3 T and 1.5 T: protocol optimization and application to cartilage, ligament and tendon pathology in cadaver specimens. Eur Radiol 17:1518–1528CrossRefGoogle Scholar
  2. 2.
    Baum T, Joseph GB, Karampinos DC et al (2013) Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthritis Cartilage 21:1474–1484CrossRefGoogle Scholar
  3. 3.
    Boks SS, Vroegindeweij D, Koes BW et al (2007) MRI follow-up of posttraumatic bone bruises of the knee in general practice. AJR Am J Roentgenol 189:556–562CrossRefGoogle Scholar
  4. 4.
    Bolbos RI, Link TM, Ma CB et al (2009) T1rho relaxation time of the meniscus and its relationship with T1rho of adjacent cartilage in knees with acute ACL injuries at 3 T. Osteoarthritis Cartilage 17:12–18CrossRefGoogle Scholar
  5. 5.
    Burstein D, Gray M, Mosher T et al (2009) Measures of molecular composition and structure in osteoarthritis. Radiol Clin North Am 47:675–686CrossRefGoogle Scholar
  6. 6.
    Crema MD, Roemer FW, Zhu Y et al (2010) Subchondral cystlike lesions develop longitudinally in areas of bone marrow edema-like lesions in patients with or at risk for knee osteoarthritis: detection with MR imaging—the MOST study. Radiology 256:855–862CrossRefGoogle Scholar
  7. 7.
    Dell’accio F, Vincent TL (2010) Joint surface defects: clinical course and cellular response in spontaneous and experimental lesions. Eur Cell Mater 20:210–217CrossRefGoogle Scholar
  8. 8.
    Dietrich TJ, Fucentese SF, Pfirrmann CW (2016) Imaging of individual anatomical risk factors for patellar instability. Semin Musculoskelet Radiol 20:65–73CrossRefGoogle Scholar
  9. 9.
    Felson DT, Niu J, Guermazi A et al (2007) Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum 56:2986–2992CrossRefGoogle Scholar
  10. 10.
    Filardo G, Andriolo L, Sessa A et al (2017) Age is not a contraindication for cartilage surgery: a critical analysis of standardized outcomes at long-term follow-up. Am J Sports Med 45:1822–1828CrossRefGoogle Scholar
  11. 11.
    Forney M, Subhas N, Donley B et al (2011) MR imaging of the articular cartilage of the knee and ankle. Magn Reson Imaging Clin N Am 19:379–405CrossRefGoogle Scholar
  12. 12.
    Fritz J, Janssen P, Gaissmaier C et al (2008) Articular cartilage defects in the knee—basics, therapies and results. Injury 39(Suppl 1):S50–S57CrossRefGoogle Scholar
  13. 13.
    Gersing AS, Feuerriegel G, Holwein C et al (2018) T2-relaxation time of cartilage repair tissue is associated with bone remodeling after spongiosa-augmented matrix-associated autologous chondrocyte implantation. Osteoarthritis Cartilage.  https://doi.org/10.1016/j.joca.2018.08.023 CrossRefPubMedGoogle Scholar
  14. 14.
    Gersing AS, Schwaiger BJ, Wortler K et al (2018) Advanced cartilage imaging for detection of cartilage injuries and osteochondral lesions. Radiologe 58:422–432CrossRefGoogle Scholar
  15. 15.
    Gomoll AH, Madry H, Knutsen G et al (2010) The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc 18:434–447CrossRefGoogle Scholar
  16. 16.
    Gupta R, Virayavanich W, Kuo D et al (2014) MR T(1)rho quantification of cartilage focal lesions in acutely injured knees: correlation with arthroscopic evaluation. Magn Reson Imaging 32:1290–1296CrossRefGoogle Scholar
  17. 17.
    Jungmann PM, Agten CA, Pfirrmann CW et al (2017) Advances in MRI around metal. J Magn Reson Imaging 46:972–991CrossRefGoogle Scholar
  18. 18.
    Jungmann PM, Baum T, Bauer JS et al (2014) Cartilage repair surgery: outcome evaluation by using noninvasive cartilage biomarkers based on quantitative MRI techniques? Biomed Res Int 2014:840170CrossRefGoogle Scholar
  19. 19.
    Jungmann PM, Baum T, Schaeffeler C et al (2015) 3.0T MR imaging of the ankle: axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging-A preliminary study. Eur J Radiol 84:1546–1554CrossRefGoogle Scholar
  20. 20.
    Jungmann PM, Kraus MS, Nardo L et al (2013) T(2) relaxation time measurements are limited in monitoring progression, once advanced cartilage defects at the knee occur: longitudinal data from the osteoarthritis initiative. J Magn Reson Imaging 38:1415–1424CrossRefGoogle Scholar
  21. 21.
    Jungmann PM, Li X, Nardo L et al (2012) Do cartilage repair procedures prevent degenerative meniscus changes?: longitudinal t1rho and morphological evaluation with 3.0-T MRI. Am J Sports Med 40:2700–2708CrossRefGoogle Scholar
  22. 22.
    Jungmann PM, Liu F, Link TM (2014) What has imaging contributed to the epidemiological understanding of osteoarthritis? Skeletal Radiol 43:271–275CrossRefGoogle Scholar
  23. 23.
    Jungmann PM, Welsch GH, Brittberg M et al (2017) Magnetic resonance imaging score and classification system (AMADEUS) for assessment of preoperative cartilage defect severity. Cartilage 8:272–282CrossRefGoogle Scholar
  24. 24.
    Kendell SD, Helms CA, Rampton JW et al (2005) MRI appearance of chondral delamination injuries of the knee. AJR Am J Roentgenol 184:1486–1489CrossRefGoogle Scholar
  25. 25.
    Kijowski R, Davis KW, Woods MA et al (2009) Knee joint: comprehensive assessment with 3D isotropic resolution fast spin-echo MR imaging—diagnostic performance compared with that of conventional MR imaging at 3.0 T. Radiology 252:486–495CrossRefGoogle Scholar
  26. 26.
    Kirschke JS, Braun S, Baum T et al (2016) Diagnostic value of CT arthrography for evaluation of Osteochondral lesions at the ankle. Biomed Res Int 2016:3594253CrossRefGoogle Scholar
  27. 27.
    Levy AS, Lohnes J, Sculley S et al (1996) Chondral delamination of the knee in soccer players. Am J Sports Med 24:634–639CrossRefGoogle Scholar
  28. 28.
    Link TM, Steinbach LS, Ghosh S et al (2003) Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology 226:373–381CrossRefGoogle Scholar
  29. 29.
    Niemeyer P, Albrecht D, Andereya S et al (2016) Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “clinical tissue regeneration” of the German society of orthopaedics and trauma (DGOU). Knee 23:426–435CrossRefGoogle Scholar
  30. 30.
    Niemeyer P, Andereya S, Angele P et al (2013) Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Tissue Regeneration” of the German Society of Orthopaedic Surgery and Traumatology (DGOU). Z Orthop Unfall 151:38–47PubMedGoogle Scholar
  31. 31.
    Niemeyer P, Kostler W, Salzmann GM et al (2010) Autologous chondrocyte implantation for treatment of focal cartilage defects in patients age 40 years and older: A matched-pair analysis with 2‑year follow-up. Am J Sports Med 38:2410–2416CrossRefGoogle Scholar
  32. 32.
    Notohamiprodjo M, Kuschel B, Horng A et al (2012) 3D-MRI of the ankle with optimized 3D-SPACE. Invest Radiol 47:231–239CrossRefGoogle Scholar
  33. 33.
    Ochs BG, Muller-Horvat C, Albrecht D et al (2011) Remodeling of articular cartilage and subchondral bone after bone grafting and matrix-associated autologous chondrocyte implantation for osteochondritis dissecans of the knee. Am J Sports Med 39:764–773CrossRefGoogle Scholar
  34. 34.
    Orr JD, Sabesan V, Major N et al (2010) Painful bone marrow edema syndrome of the foot and ankle. Foot Ankle Int 31:949–953CrossRefGoogle Scholar
  35. 35.
    Palmer WE, Levine SM, Dupuy DE (1997) Knee and shoulder fractures: association of fracture detection and marrow edema on MR images with mechanism of injury. Radiology 204:395–401CrossRefGoogle Scholar
  36. 36.
    Rath B, Eschweiler J, Betsch M et al (2017) Cartilage repair of the knee joint. Orthopade 46:919–927CrossRefGoogle Scholar
  37. 37.
    Ristow O, Steinbach L, Sabo G et al (2009) Isotropic 3D fast spin-echo imaging versus standard 2D imaging at 3.0 T of the knee—image quality and diagnostic performance. Eur Radiol 19:1263–1272CrossRefGoogle Scholar
  38. 38.
    Roemer FW, Bohndorf K (2002) Long-term osseous sequelae after acute trauma of the knee joint evaluated by MRI. Skeletal Radiol 31:615–623CrossRefGoogle Scholar
  39. 39.
    Roemer FW, Guermazi A, Javaid MK et al (2009) Change in MRI-detected subchondral bone marrow lesions is associated with cartilage loss: the MOST Study. A longitudinal multicentre study of knee osteoarthritis. Ann Rheum Dis 68:1461–1465CrossRefGoogle Scholar
  40. 40.
    Roemer FW, Kwoh CK, Hannon MJ et al (2011) Semiquantitative assessment of focal cartilage damage at 3T MRI: a comparative study of dual echo at steady state (DESS) and intermediate-weighted (IW) fat suppressed fast spin echo sequences. Eur J Radiol 80:e126–131CrossRefGoogle Scholar
  41. 41.
    Roos EM, Engelhart L, Ranstam J et al (2011) ICRS recommendation document: patient-reported outcome instruments for use in patients with articular cartilage defects. Cartilage 2:122–136CrossRefGoogle Scholar
  42. 42.
    Rosenberger RE, Gomoll AH, Bryant T et al (2008) Repair of large chondral defects of the knee with autologous chondrocyte implantation in patients 45 years or older. Am J Sports Med 36:2336–2344CrossRefGoogle Scholar
  43. 43.
    Salzmann GM, Niemeyer P, Steinwachs M et al (2011) Cartilage repair approach and treatment characteristics across the knee joint: a European survey. Arch Orthop Trauma Surg 131:283–291CrossRefGoogle Scholar
  44. 44.
    Scher C, Craig J, Nelson F (2008) Bone marrow edema in the knee in osteoarthrosis and association with total knee arthroplasty within a three-year follow-up. Skeletal Radiol 37:609–617CrossRefGoogle Scholar
  45. 45.
    Schmid MR, Pfirrmann CW, Hodler J et al (2003) Cartilage lesions in the ankle joint: comparison of MR arthrography and CT arthrography. Skeletal Radiol 32:259–265CrossRefGoogle Scholar
  46. 46.
    Stevens KJ, Busse RF, Han E et al (2008) Ankle: isotropic MR imaging with 3D-FSE-cube—initial experience in healthy volunteers. Radiology 249:1026–1033CrossRefGoogle Scholar
  47. 47.
    Waldt S, Bruegel M, Ganter K et al (2005) Comparison of multislice CT arthrography and MR arthrography for the detection of articular cartilage lesions of the elbow. Eur Radiol 15:784–791CrossRefGoogle Scholar
  48. 48.
    Weber MA, Wunnemann F, Jungmann PM et al (2017) Modern cartilage imaging of the ankle. Rofo 189:945–956CrossRefGoogle Scholar
  49. 49.
    Wörtler K (2008) MRI of the knee joint. Orthopade 37:157–172CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik für diagnostische und interventionelle RadiologieUniversitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität FreiburgFreiburgDeutschland
  2. 2.Klinik für NeuroradiologieUniversitätsSpital ZürichZürichSchweiz

Personalised recommendations