Advertisement

Arthroskopie

, Volume 32, Issue 1, pp 28–39 | Cite as

Innovationen bei der Behandlung der proximalen Humerusfraktur

  • J. C. KatthagenEmail author
  • R.-O. Dey Hazra
  • M. J. Raschke
  • L. Heilmann
  • P. Michel
  • H. Lill
  • B. Schliemann
Leitthema
  • 216 Downloads

Zusammenfassung

Die Behandlung der proximalen Humerusfraktur ist anspruchsvoll und befindet sich im steten Wandel. Hohe Komplikationsraten nach winkelstabiler Plattenosteosynthese haben dazu geführt, dass zahlreiche Modifikationen der Technik vorgenommen und additive Stabilisierungsverfahren entwickelt wurden. Neben der Schraubenaugmentation haben sich auch Knochentransplantate etabliert, nachdem sie im angloamerikanischen Sprachraum bereits seit Längerem genutzt werden. Auch die Verwendung von neuen Plattensystemen aus karbonfaserverstärktem PEEK (Polyetheretherketon) ist mit vielversprechenden ersten Ergebnissen assoziiert. Während die Arthroskopie im Rahmen der Implantatentfernung und Arthrolyse standardmäßig eingesetzt wird, ist sie nun auch fester Bestandteil der Frakturversorgung, insbesondere bei knöchernen Ausrissen der Rotatorenmanschette bzw. Tuberculum-majus-Frakturen. Auch im Bereich der endoprothetischen Versorgung gibt es zahlreiche Neuerungen, insbesondere zur Vermeidung des „scapular notchings“ und zur Optimierung des Bewegungsausmaßes. Der vorliegende Artikel gibt einen Überblick über diese innovativen Verfahren und Implantate. Darüber hinaus wird auch der aktuelle Stand der Literatur dargestellt.

Schlüsselwörter

Tuberculum-majus-Fraktur Osteosynthese Inverse Schulterprothese Polyetheretherketon Schraubenaugmentation 

Innovations in the treatment of proximal humeral fractures

Abstract

The treatment of proximal humeral fractures remains challenging and is in a continuous state of flux. The high complication rates after internal angled plate osteosynthesis of these fractures has led to many technical modifications and new procedures were developed. All these measures aim to increase the stability of the reconstruction. Screw augmentation and bone grafts are nowadays established techniques, although they have been used for a long time in Anglo-American speaking regions. Modern carbon fiber reinforced plate systems, such as polyetheretherketone (PEEK) plates seem to provide promising results for distinct fracture patterns. While arthroscopy is widely performed during implant removal and arthroscopy, it is now a standard tool in the treatment of fractures, in particular for greater tuberosity fractures and bony avulsions of the rotator cuff. Modifications in the field of arthroplasty aim to reduce scapular notching and increase the range of motion after joint replacement. The present article provides a comprehensive overview of these innovative procedures and implants. Furthermore, the current state of the literature on this topic is presented.

Keywords

Greater tuberosity fracture Osteosynthesis Reverse shoulder arthroplasty Polyetheretherketone Screw augmentation 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J.C. Katthagen ist als Referent für Arthrex GmbH tätig. M.J. Raschke ist als Berater für DePuy Synthes tätig. H. Lill ist als Berater für DePuy Synthes und Arthrex GmbH tätig. R.-O. Dey Hazra, L. Heilmann, P. Michel und B. Schliemann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Anakwenze OA, Zoller S, Ahmad CS et al (2014) Reverse shoulder arthroplasty for acute proximal humerus fractures: a systematic review. J Shoulder Elbow Surg 23:e73–e80CrossRefGoogle Scholar
  2. 2.
    Athwal GS, Macdermid JC, Reddy KM et al (2015) Does bony increased-offset reverse shoulder arthroplasty decrease scapular notching? J Shoulder Elbow Surg 24:468–473CrossRefGoogle Scholar
  3. 3.
    Bae JH, Oh JK, Chon CS et al (2011) The biomechanical performance of locking plate fixation with intramedullary fibular strut graft augmentation in the treatment of unstable fractures of the proximal humerus. J Bone Joint Surg Br 93:937–941CrossRefGoogle Scholar
  4. 4.
    Bai L, Fu Z, An S et al (2014) The effect of calcar screw use in surgical neck fractures of the proximal humerus with unstable medial support: a biomechanical study. J Orthop Trauma 28:452.  https://doi.org/10.1097/BOT.0000000000000057 CrossRefPubMedGoogle Scholar
  5. 5.
    Beks RB, Ochen Y, Frima H et al (2018) Operative versus nonoperative treatment of proximal humeral fractures: a systematic review, meta-analysis, and comparison of observational studies and randomized controlled trials. J Shoulder Elb Surg 27:1526–1534CrossRefGoogle Scholar
  6. 6.
    Blazejak M, Hofmann-Fliri L, Buchler L et al (2013) In vitro temperature evaluation during cement augmentation of proximal humerus plate screw tips. Injury 44:1321–1326CrossRefGoogle Scholar
  7. 7.
    Boileau P, Morin-Salvo N, Gauci MO et al (2017) Angled BIO-RSA (bony-increased offset-reverse shoulder arthroplasty): a solution for the management of glenoid bone loss and erosion. J Shoulder Elb Surg 26:2133–2142CrossRefGoogle Scholar
  8. 8.
    Cha H, Park KB, Oh S et al (2017) Treatment of comminuted proximal humeral fractures using locking plate with strut allograft. J Shoulder Elbow Surg 26:781–785CrossRefGoogle Scholar
  9. 9.
    Chow RM, Begum F, Beaupre LA et al (2012) Proximal humeral fracture fixation: locking plate construct +/− intramedullary fibular allograft. J Shoulder Elbow Surg 21:894–901CrossRefGoogle Scholar
  10. 10.
    Churchill JL, Garrigues GE (2016) Current controversies in reverse total shoulder arthroplasty. JBJS Rev.  https://doi.org/10.2106/JBJS.RVW.15.00070 CrossRefPubMedGoogle Scholar
  11. 11.
    Cuff D, Clark R, Pupello D et al (2012) Reverse shoulder arthroplasty for the treatment of rotator cuff deficiency: a concise follow-up, at a minimum of five years, of a previous report. J Bone Joint Surg Am 94:1996–2000CrossRefGoogle Scholar
  12. 12.
    Edwards TB, Trappey GJ, Riley C et al (2012) Inferior tilt of the glenoid component does not decrease scapular notching in reverse shoulder arthroplasty: results of a prospective randomized study. J Shoulder Elbow Surg 21:641–646CrossRefGoogle Scholar
  13. 13.
    Egol KA, Sugi MT, Ong CC et al (2012) Fracture site augmentation with calcium phosphate cement reduces screw penetration after open reduction-internal fixation of proximal humeral fractures. J Shoulder Elb Surg 21:741–748CrossRefGoogle Scholar
  14. 14.
    Ellwein A, Imrecke J, Jensen G et al (2018) Schraubenaugmentation proximaler Humerusfrakturen: Erleichterung der Metallentfernung durch Säuberung des Schraubenkopfes von Zement. Obere Extremität.  https://doi.org/10.1007/s11678-018-0483-z CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ellwein A, Katthagen JC, Lill H (2017) Plattenosteosynthese bei proximaler Humerusfraktur. In: Lehmann LJ, Loew M (Hrsg) Meistertechniken in der operativen Orthopädie und Unfallchirurgie. Springer, HeidelbergGoogle Scholar
  16. 16.
    Erdle B, Izadpanah K, Eberbach H et al (2018) Primary fracture protheses and reverse shoulder arthroplasty in complex humeral head fractures : an alternative to joint-preserving osteosynthesis? Orthopäde 47:410–419CrossRefGoogle Scholar
  17. 17.
    Frankle M, Siegal S, Pupello D et al (2005) The reverse shoulder prosthesis for glenohumeral arthritis associated with severe rotator cuff deficiency. A minimum two-year follow-up study of sixty patients. J Bone Joint Surg Am 87:1697–1705PubMedGoogle Scholar
  18. 18.
    Gardner MJ, Weil Y, Barker JU et al (2007) The importance of medial support in locked plating of proximal humerus fractures. J Orthop Trauma 21:185–191CrossRefGoogle Scholar
  19. 19.
    Goetzen M, Windolf M, Schmoelz W (2014) Augmented screws in angular stable plating of the proximal humerus: What to do when revision is needed? Clin Biomech (Bristol, Avon) 29:1023–1026CrossRefGoogle Scholar
  20. 20.
    Gradl G, Knobe M, Stoffel M et al (2013) Biomechanical evaluation of locking plate fixation of proximal humeral fractures augmented with calcium phosphate cement. J Orthop Trauma 27:399–404CrossRefGoogle Scholar
  21. 21.
    Hepp P, Theopold J, Jarvers JS et al (2014) Multiplanar reconstruction with mobile 3D image intensifier. Surgical treatment of proximal humerus fractures. Unfallchirurg 117:437–444PubMedGoogle Scholar
  22. 22.
    Hsiao CK, Tsai YJ, Yen CY et al (2017) Intramedullary cortical bone strut improves the cyclic stability of osteoporotic proximal humeral fractures. BMC Musculoskelet Disord 18:64CrossRefGoogle Scholar
  23. 23.
    Ji JH, Shafi M, Song IS et al (2010) Arthroscopic fixation technique for comminuted, displaced greater tuberosity fracture. Arthroscopy 26:600–609CrossRefGoogle Scholar
  24. 24.
    Jost B, Spross C, Grehn H et al (2013) Locking plate fixation of fractures of the proximal humerus: analysis of complications, revision strategies and outcome. J Shoulder Elbow Surg 22:542–549CrossRefGoogle Scholar
  25. 25.
    Jung WB, Moon ES, Kim SK et al (2013) Does medial support decrease major complications of unstable proximal humerus fractures treated with locking plate? BMC Musculoskelet Disord 14:102CrossRefGoogle Scholar
  26. 26.
    Kathrein S, Kralinger F, Blauth M et al (2013) Biomechanical comparison of an angular stable plate with augmented and non-augmented screws in a newly developed shoulder test bench. Clin Biomech (Bristol, Avon) 28:273–277CrossRefGoogle Scholar
  27. 27.
    Katthagen JC, Ellwein A, Lutz O et al (2017) Outcomes of proximal humeral fracture fixation with locked CFR-PEEK plating. Eur J Orthop Surg Traumatol 27:351–358CrossRefGoogle Scholar
  28. 28.
    Katthagen JC, Hennecke D, Jensen G et al (2014) Arthroscopy after locked plating of proximal humeral fractures: implant removal, capsular release, and intra-articular findings. Arthroscopy 30:1061–1067CrossRefGoogle Scholar
  29. 29.
    Katthagen JC, Huber M, Grabowski S et al (2017) Failure and revision rates of proximal humeral fracture treatment with the use of a standardized treatment algorithm at a level-1 trauma center. J Orthop Traumatol 18:265–274CrossRefGoogle Scholar
  30. 30.
    Katthagen JC, Jensen G, Voigt C et al (2014) Arthroskopie bei proximaler Humersufraktur. Arthroskopie 27:265–274CrossRefGoogle Scholar
  31. 31.
    Katthagen JC, Lutz O, Voigt C et al (2018) Cement augmentation of humeral head screws reduces early implant-related complications after locked plating of proximal humeral fractures. Obere Extremität 13:123–129CrossRefGoogle Scholar
  32. 32.
    Katthagen JC, Schwarze M, Meyer-Kobbe J et al (2014) Biomechanical effects of calcar screws and bone block augmentation on medial support in locked plating of proximal humeral fractures. Clin Biomech (Bristol, Avon) 29:10.1016/j.clinbiomech.2014.06.008.  https://doi.org/10.1016/j.clinbiomech.2014.06.008 CrossRefGoogle Scholar
  33. 33.
    Katthagen JC, Schwarze M, Warnhoff M et al (2016) Influence of plate material and screw design on stiffness and ultimate load of locked plating in osteoporotic proximal humeral fractures. Injury 47:617–624CrossRefGoogle Scholar
  34. 34.
    Kennedy J, Molony D, Burke NG et al (2013) Effect of calcium triphosphate cement on proximal humeral fracture osteosynthesis: a cadaveric biomechanical study. J Orthop Surg 21:173–177CrossRefGoogle Scholar
  35. 35.
    Kim DS, Lee DH, Chun YM et al (2018) Which additional augmented fixation procedure decreases surgical failure after proximal humeral fracture with medial comminution: fibular allograft or inferomedial screws? J Shoulder Elbow Surg 27:1852–1858CrossRefGoogle Scholar
  36. 36.
    Knierzinger D, Heinrichs CH, Hengg C et al (2018) Biomechanical evaluation of cable and suture cerclages for tuberosity reattachment in a 4-part proximal humeral fracture model treated with reverse shoulder arthroplasty. J Shoulder Elb Surg 27:1816–1823CrossRefGoogle Scholar
  37. 37.
    Ladermann A, Denard PJ, Boileau P et al (2015) Effect of humeral stem design on humeral position and range of motion in reverse shoulder arthroplasty. Int Orthop 39:2205–2213CrossRefGoogle Scholar
  38. 38.
    Ladermann A, Denard PJ, Boileau P et al (2018) What is the best glenoid configuration in onlay reverse shoulder arthroplasty? Int Orthop 42:1339–1346CrossRefGoogle Scholar
  39. 39.
    Laux CJ, Grubhofer F, Werner CML et al (2017) Current concepts in locking plate fixation of proximal humerus fractures. J Orthop Surg Res 12:137CrossRefGoogle Scholar
  40. 40.
    Laver L, Garrigues GE (2014) Avoiding superior tilt in reverse shoulder arthroplasty: a review of the literature and technical recommendations. J Shoulder Elbow Surg 23:1582–1590CrossRefGoogle Scholar
  41. 41.
    Li R, Cai M, Tao K (2017) Arthroscopic reduction and fixation for displaced greater tuberosity fractures using the modified suture-bridge technique. Int Orthop 41:1257–1263CrossRefGoogle Scholar
  42. 42.
    Liao W, Zhang H, Li Z et al (2016) Is arthroscopic technique superior to open reduction internal fixation in the treatment of isolated displaced greater tuberosity fractures? Clin Orthop Relat Res 474:1269–1279CrossRefGoogle Scholar
  43. 43.
    Maroun C, Aliani D, Hass A et al (2017) Shoulder arthroscopy combined to hardware removal in proximal humeral fractures: a series of 58 cases with a mean follow-up of 2 years. Eur J Orthop Surg Traumatol 27:317–321CrossRefGoogle Scholar
  44. 44.
    Mathison C, Chaudhary R, Beaupre L et al (2010) Biomechanical analysis of proximal humeral fixation using locking plate fixation with an intramedullary fibular allograft. Clin Biomech (Bristol, Avon) 25:642–646CrossRefGoogle Scholar
  45. 45.
    Miquel J, Santana F, Palau E et al (2018) Retaining or excising the supraspinatus tendon in complex proximal humeral fractures treated with reverse prosthesis: a biomechanical analysis in two different designs. Arch Orthop Trauma Surg 138(11):1533–1539CrossRefGoogle Scholar
  46. 46.
    Namdari S, Horneff JG, Baldwin K (2013) Comparison of hemiarthroplasty and reverse arthroplasty for treatment of proximal humeral fractures: a systematic review. J Bone Joint Surg Am 95:1701–1708CrossRefGoogle Scholar
  47. 47.
    Osterhoff G, Baumgartner D, Favre P et al (2011) Medial support by fibula bone graft in angular stable plate fixation of proximal humeral fractures: an in vitro study with synthetic bone. J Shoulder Elb Surg 20:740–746CrossRefGoogle Scholar
  48. 48.
    Osterhoff G, O’hara NN, D’cruz J et al (2017) A cost-effectiveness analysis of reverse total shoulder arthroplasty versus hemiarthroplasty for the management of complex proximal humeral fractures in the elderly. Value Health 20:404–411CrossRefGoogle Scholar
  49. 49.
    Resch H, Tauber M, Neviaser RJ et al (2016) Classification of proximal humeral fractures based on a pathomorphologic analysis. J Shoulder Elbow Surg 25:455–462CrossRefGoogle Scholar
  50. 50.
    Robinson CM, Page RS (2003) Severely impacted valgus proximal humeral fractures. Results of operative treatment. J Bone Joint Surg Am 85-A:1647–1655CrossRefGoogle Scholar
  51. 51.
    Röderer G, Scola A, Schmolz W et al (2013) Biomechanical in vitro assessment of screw augmentation in locked plating of proximal humerus fractures. Injury 44:1327–1332CrossRefGoogle Scholar
  52. 52.
    Russo R, D’auria D, Ciccarelli M et al (2017) Triangular block bridge method for surgical treatment of complex proximal humeral fractures: theoretical concept, surgical technique and clinical results. Injury 48(Suppl 3):S12–S19CrossRefGoogle Scholar
  53. 53.
    Schliemann B, Hartensuer R, Koch T et al (2015) Treatment of proximal humerus fractures with a CFR-PEEK plate: 2‑year results of a prospective study and comparison to fixation with a conventional locking plate. J Shoulder Elbow Surg 24(8):1282.  https://doi.org/10.1016/j.jse.2014.12.028 CrossRefPubMedGoogle Scholar
  54. 54.
    Schliemann B, Seifert R, Rosslenbroich SB et al (2015) Screw augmentation reduces motion at the bone-implant interface: a biomechanical study of locking plate fixation of proximal humeral fractures. J Shoulder Elbow Surg 24:1968–1973CrossRefGoogle Scholar
  55. 55.
    Schliemann B, Seifert R, Theisen C et al (2017) PEEK versus titanium locking plates for proximal humerus fracture fixation: a comparative biomechanical study in two- and three-part fractures. Arch Orthop Trauma Surg 137:63–71CrossRefGoogle Scholar
  56. 56.
    Schliemann B, Wahnert D, Theisen C et al (2015) How to enhance the stability of locking plate fixation of proximal humerus fractures? An overview of current biomechanical and clinical data. Injury 46:1207–1214CrossRefGoogle Scholar
  57. 57.
    Sebastia-Forcada E, Cebrian-Gomez R, Lizaur-Utrilla A et al (2014) Reverse shoulder arthroplasty versus hemiarthroplasty for acute proximal humeral fractures. A blinded, randomized, controlled, prospective study. J Shoulder Elbow Surg 23:1419–1426CrossRefGoogle Scholar
  58. 58.
    Südkamp N, Bayer J, Hepp P et al (2009) Open reduction and internal fixation of proximal humeral fractures with use of the locking proximal humerus plate. Results of a prospective, multicenter, observational study. J Bone Joint Surg Am 91:1320–1328CrossRefGoogle Scholar
  59. 59.
    Theopold J, Marquass B, Fakler J et al (2016) The bicipital groove as a landmark for reconstruction of complex proximal humeral fractures with hybrid double plate osteosynthesis. BMC Surg 16:10CrossRefGoogle Scholar
  60. 60.
    Theopold J, Weihs K, Marquass B et al (2017) Detection of primary screw perforation in locking plate osteosynthesis of proximal humerus fracture by intra-operative 3D fluoroscopy. Arch Orthop Trauma Surg 137:1491–1498CrossRefGoogle Scholar
  61. 61.
    Unger S, Erhart S, Kralinger F et al (2012) The effect of in situ augmentation on implant anchorage in proximal humeral head fractures. Injury 43:1759–1763CrossRefGoogle Scholar
  62. 62.
    Virani NA, Cabezas A, Gutierrez S et al (2013) Reverse shoulder arthroplasty components and surgical techniques that restore glenohumeral motion. J Shoulder Elbow Surg 22:179–187CrossRefGoogle Scholar
  63. 63.
    Walch G, Badet R, Nove-Josserand L et al (1996) Nonunions of the surgical neck of the humerus: surgical treatment with an intramedullary bone peg, internal fixation, and cancellous bone grafting. J Shoulder Elbow Surg 5:161–168CrossRefGoogle Scholar
  64. 64.
    Zhang L, Zheng J, Wang W et al (2011) The clinical benefit of medial support screws in locking plating of proximal humerus fractures: a prospective randomized study. Int Orthop 35:1655–1661CrossRefGoogle Scholar
  65. 65.
    Zhang W, Zeng L, Liu Y et al (2014) The mechanical benefit of medial support screws in locking plating of proximal humerus fractures. PLoS ONE 9:e103297CrossRefGoogle Scholar
  66. 66.
    Zhu L, Liu Y, Yang Z et al (2014) Locking plate fixation combined with iliac crest bone autologous graft for proximal humerus comminuted fracture. Chin Med J 127:1672–1676PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • J. C. Katthagen
    • 1
    Email author
  • R.-O. Dey Hazra
    • 2
  • M. J. Raschke
    • 1
  • L. Heilmann
    • 1
  • P. Michel
    • 1
  • H. Lill
    • 2
  • B. Schliemann
    • 1
  1. 1.Klinik für Unfall‑, Hand- und WiederherstellungschirurgieUniversitätsklinikum MünsterMünsterDeutschland
  2. 2.Klinik für Orthopädie und UnfallchirurgieDIAKOVERE FriederikenstiftHannoverDeutschland

Personalised recommendations