Advertisement

Anatomie und Pathologie der Bänder im oberen und unteren Sprunggelenk

  • A. Seifarth
Leitthema
  • 11 Downloads

Zusammenfassung

Die Distorsion des Sprunggelenks ist eine der häufigsten Verletzungen mit oft chronischen Beschwerden, Instabilität und dem Risiko einer posttraumatischen Arthrose als Folge. Beim klassischen Distorsionstrauma mit Inversion, Plantarflexion und Supination ist das Ligamentum (Lig.) tibiofibulare anterius das am häufigsten verletzte Band, gefolgt vom Lig. fibulocalcaneare. Das Lig. fibulare posterius ist nur selten betroffen. Verletzungen der Syndesmose bei forcierter Außenration des Talus gegenüber dem Unterschenkel führen primär zu einer Ruptur des vorderen Anteils. Bei der Diagnostik mittels Magnetresonanztomographie (MRT) ist insbesondere auch auf das Lig. interosseum zu achten, welches ein wichtiger Stabilisator der Malleolengabel ist. Die Anatomie und Biomechanik des medialen Bandapparats ist komplex und bildet eine funktionelle Einheit mit dem Tibiospring-Ligament-Komplex. Dieser ist ein wichtiger Stabilisator des unteren Sprunggelenks; Verletzungen zusammen mit Außenbandrupturen sind häufig. Die Bänder des Subtalargelenks sind bei Außenbandverletzungen häufig mitbetroffen und können im Rahmen einer chronischen Insuffizienz Ursache eines Pes planovalgus sein. Verletzungen von Bandstrukturen am Sprunggelenk können v. a. bei nicht suffizienter Immobilisierung während der Heilungsphase zu narbigen Veränderungen mit Bandverdickung führen. Dadurch, aber auch durch die begleitende Synovialitis kann es zum Weichteilimpingement kommen.

Schlüsselwörter

Bandverletzung Biomechanik Distorsionstrauma Instabilität Magnetresonanztomographie Sprunggelenk 

Anatomy and pathology of the ligaments in the upper and lower ankle joints

Abstract

Distortion of the ankle joint is one of the most common injuries and can often cause chronic pain and instability with the risk of posttraumatic osteoarthritis. The typical ankle sprain is due to inversion, plantar flexion and supination and is most commonly associated with injury of the anterior tibiofibular ligament, followed by the calcaneofibular ligament. The posterior tibiofibular ligament is rarely involved. Injuries of the syndesmosis with external rotation of the talus in the tibiotalar joint primarily lead to rupture of the anterior part of the syndesmosis. When diagnosing injuries of the syndesmosis with magnetic resonance imaging (MRI), evaluation the interosseous ligament is crucial. This ligament has an important stabilizing function of the tibiotalar joint. The anatomy and biomechanics of the medial collateral ligament are complex and have to be seen as a functional unit with the tibiospring ligament complex. The latter is frequently injured when the lateral ligaments are involved. The tibiospring ligament complex is also an important stabilizer of the subtalar joint. The ligaments of the tarsal sinus are often affected in conjunction with injuries of the lateral ligaments and may cause chronic insufficiency and a pes planovalgus deformity. Ligamentous injuries, especially when not treated with efficient immobilization during the healing phase, can cause scar tissue with thickened ligaments and synovitis. Soft tissue impingement causing chronic pain is a potential sequela.

Keywords

Ligament injury Biomechanics Distortion trauma Instability Magnetic resonance imaging Ankle 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

A. Seifarth gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Best R, Ahrens P (2018) Impingement-Syndrom des oberen Sprunggelenks. Arthroskopie 31:134–140CrossRefGoogle Scholar
  2. 2.
    Beumer A, Valstar ER, Garling EH et al (2006) Effects of ligament sectioning on the kinematics of the distal tibiofibular syndesmosis: a radiostereometric study of 10 cadaveric specimens based on presumed trauma mechanisms with suggestions for treatment. Acta Orthop 77:531–540CrossRefGoogle Scholar
  3. 3.
    Broström L (1966) Sprained ankles VI. surgical treatment of chronic ligament ruptures. Acta Chir Scand 132:551–565PubMedGoogle Scholar
  4. 4.
    Chhabra A, Subhawong TK, Carrino JA (2010) MR imaging of deltoid ligament pathologic findings and associated impingement syndromes. Radiographics 30:751–761CrossRefGoogle Scholar
  5. 5.
    Cromeens BP, Kirchhoff CA, Patterson RM et al (2015) An attachment-based description of the medial collateral and spring ligament complexes. Foot Ankle Int 36:710–721CrossRefGoogle Scholar
  6. 6.
    Earll M, Wayne J, Brodrick C, Vokshoor A, Adelaar R (1996) Contribution of the deltoid Ligament to ankle joint contact characteristiecs: a cadaver study. Foot Ankle Int 17:317–324CrossRefGoogle Scholar
  7. 7.
    Funk JR (2011) Ankle injury mechanisms: lessons learned from cadaveric studies. Clin Anat 24:350–361CrossRefGoogle Scholar
  8. 8.
    Golanó P, Vega J, Pérez-Carro L, Götzens V (2006) Ankle anatomy for the Arthroscopist. Part II: role of the ankle ligaments in soft tissue impingement. Foot Ankle Clin 11:275–296CrossRefGoogle Scholar
  9. 9.
    Golanó P, Vega J, Leeuw PAJ et al (2010) Anatomy of the ankle ligaments: a pictorial essay. Knee Surg Sports Traumatol Arthrosc 18:557–569CrossRefGoogle Scholar
  10. 10.
    Großterlinden LG, Hartel M, Yamamura J et al (2016) Isolated syndesmotic injuries in acute ankle sprains: diagnostic significance of clinical examination and MRI. Knee Surg Sports Traumatol Arthrosc 24:1180–1186CrossRefGoogle Scholar
  11. 11.
    Henke T, Luig P, Schulz D (2014) Sportunfälle im Vereinssport in Deutschland. Bundesgesundheitsblatt 57:628–637CrossRefGoogle Scholar
  12. 12.
    Hertel J (2002) Functional anatomy, Pathomechanics, and Pathophysiology of lateral ankle instability. J Athl Train 37:364–375PubMedPubMedCentralGoogle Scholar
  13. 13.
    Hoefnagels EM, Waites MD, Wing ID et al (2007) Biomechanical comparison of the interosseous tibiofibular ligament and the anterior tibiofibular ligament. Foot Ankle Int 28:602–604CrossRefGoogle Scholar
  14. 14.
    Jolman S, Robbins J, Lewis L et al (2016) Comparison of magnetic resonance imaging and stress radiographs in the evaluation of chronic lateral ankle instability. Foot Ankle Int 38:397–404CrossRefGoogle Scholar
  15. 15.
    Kim YS, Kim YB, Kim TG et al (2015) Reliability and validity of magnetic resonance imaging for the evaluation of the anterior Talofibular ligament in patients undergoing ankle Arthroscopy. Arthroscopy 31:1540–1547CrossRefGoogle Scholar
  16. 16.
    Kim TH, Moon SG, Jung H‑G, Kim NR (2017) Subtalar instability: imaging features of subtalar ligaments on 3D isotropic ankle MRI. Bmc Musculoskelet Disord 18:1–9CrossRefGoogle Scholar
  17. 17.
    Konradsen L, Bech L, Ehrenbjerg M, Nickelsen T (2002) Seven years follow-up after ankle inversion trauma. Scand J Med Sci Sports 12:129–135CrossRefGoogle Scholar
  18. 18.
    Li SY, Hou ZD, Zhang P et al (2013) Ligament structures in the tarsal sinus and canal. Foot Ankle Int 34:1729–1736CrossRefGoogle Scholar
  19. 19.
    Mengiardi B, Pinto C, Zanetti M (2016) Medial collateral ligament complex of the ankle: MR imaging anatomy and findings in medial instability. Semin Musculoskelet Radiol 20:91–103CrossRefGoogle Scholar
  20. 20.
    Millner CE, Soames RW (1998) The medial collateral ligaments of the human ankle joint—anatomical variations. Foot Ankle Int 19:289–292CrossRefGoogle Scholar
  21. 21.
    Mittlmeier T, Wichelhaus A (2015) Subtalar joint instability. Eur J Trauma Emerg Surg 41:623–629CrossRefGoogle Scholar
  22. 22.
    Park H‑J, Cha SD, Kim HS et al (2010) Reliability of MRI findings of Peroneal Tendinopathy in patients with lateral chronic ankle instability. Clin Orthop Surg 2:237–243CrossRefGoogle Scholar
  23. 23.
    van Putte-Katier N, van Ochten JM, van Middelkoop M et al (2015) Magnetic resonance imaging abnormalities after lateral ankle trauma in injured and contralateral ankles. Eur J Radiol 84:2586–2592CrossRefGoogle Scholar
  24. 24.
    Rammelt S, Richter M, Walther M (2017) S1-Leitlinie: Frische Außenbandruptur am Oberen Sprunggelenk, Leitlinien Unfallchirurgie – neu erarbeitete Leitlinie AWMF-Nr. 012-022Google Scholar
  25. 25.
    Ramsey PL, Hamilton W (1976) Changes in tibiotalar area of contact caused by lateral talar shift. J Bone Joint Surg Am 58:356–357CrossRefGoogle Scholar
  26. 26.
    Ribbans WJ, Garde A (2013) Tibialis posterior tendon and deltoid and spring ligament injuries in the elite athlete. Foot Ankle Clin 18:255–291CrossRefGoogle Scholar
  27. 27.
    Roemer FW, Jomaah N, Niu J et al (2014) Ligamentous injuries and the risk of associated tissue damage in acute ankle sprains in athletes. Am J Sports Med 42:1549–1557CrossRefGoogle Scholar
  28. 28.
    Takao M, Uchio Y, Naito K et al (2017) Arthroscopic assessment for intra-articular disorders in residual ankle disability after sprain. Am J Sports Med 33:686–692CrossRefGoogle Scholar
  29. 29.
    Valderrabano V, Horisberger M, Russell I et al (2009) Etiology of ankle osteoarthritis. Clin Orthop Relat Res 467:1800–1806CrossRefGoogle Scholar
  30. 30.
    Valkering KP, Vergroesen DA, Nolte PA (2012) Isolated syndesmosis ankle injury. Orthopedics 35:e1705–e1710CrossRefGoogle Scholar
  31. 31.
    Vega J, Peña F, Golanó P (2016) Minor or occult ankle instability as a cause of anterolateral pain after ankle sprain. Knee Surg Sports Traumatol Arthrosc 24:1116–1123CrossRefGoogle Scholar
  32. 32.
    Williams G, Widnall J, Evans P, Platt S (2013) MRI features most often associated with surgically proven tears of the spring ligament complex. Skeletal Radiol 42:969–973CrossRefGoogle Scholar
  33. 33.
    Yamaguchi R, Nimura A, Amaha K et al (2018) Anatomy of the tarsal canal and sinus in relation to the Subtalar joint capsule. Foot Ankle Int.  https://doi.org/10.1177/1071100718788038 CrossRefPubMedGoogle Scholar
  34. 34.
    Henke T, Luig P, Schulz D (2014) Sportunfälle im Vereinssport in Deutschland. Bundesgesundheitsblatt 57:628–637CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.DIE RADIOLOGIEMünchenDeutschland

Personalised recommendations