Machine Vision and Applications

, Volume 12, Issue 3, pp 113–128 | Cite as

An automatic assessment scheme for steel quality inspection

  • Klaus Wiltschi
  • Axel Pinz
  • Tony Lindeberg
Original papers


This paper presents an automatic system for steel quality assessment, by measuring textural properties of carbide distributions. In current steel inspection, specially etched and polished steel specimen surfaces are classified manually under a light microscope, by comparisons with a standard chart. This procedure is basically two-dimensional, reflecting the size of the carbide agglomerations and their directional distribution. To capture these textural properties in terms of image fea tures, we first apply a rich set of image-processing operations, including mathematical morphology, multi-channel Gabor filtering, and the computation of texture measures with automatic scale selection in linear scale-space. Then, a feature selector is applied to a 40-dimensional feature space, and a classification scheme is defined, which on a sample set of more than 400 images has classification performance values comparable to those of human metallographers. Finally, a fully automatic inspection system is designed, which actively selects the most salient carbide structure on the specimen surface for subsequent classification. The feasibility of the overall approach for future use in the production process is demonstrated by a prototype system. It is also shown how the presented classification scheme allows for the definition of a new reference chart in terms of quantitative measures.

Key words: Multi-scale analysis – Automatic scale selection – Multi-channel texture analysis – Active inspection system – Carbide classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Klaus Wiltschi
    • 1
  • Axel Pinz
    • 2
  • Tony Lindeberg
    • 3
  1. 1.Institute of Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16, 8010 Graz, Austria; e-mail:,
  2. 2.Institute of Electrical Measurement and Measurement Signal Processing, Graz University of Technology, Kopernikusgasse 24, 8010 Graz, Austria; e-mail:,
  3. 3.Computational Vision and Active Perception Laboratory, Department of Numerical Analysis and Computing Science, KTH, 100 44 Stockholm, Sweden; e-mail:, http://www.nada.kth/~tonySE

Personalised recommendations