Advertisement

Pseudocolor enhancement of mammogram texture abnormalities

  • Michal HaindlEmail author
  • Václav Remeš
Original Paper
  • 1 Downloads

Abstract

We present a novel method for enhancing texture irregularities, both lesions and microcalcifications, in digital X-ray mammograms. It can be implemented in computer-aided diagnostic systems to help improve radiologists’ diagnosis precision. The method provides three different outputs aimed at enhancing three different sizes of mammogram abnormalities. Our approach uses a two-dimensional adaptive causal autoregressive texture model to represent local texture characteristics. Based on these, we enhance suspicious breast tissue abnormalities, such as microcalcifications and masses, to make signs of developing cancer better visually discernible. We extract over 200 local textural features from different frequency bands, which are then combined into a single multichannel image using the Karhunen–Loeve transform. We propose an extension to existing contrast measures for the evaluation of contrast around regions of interest. Our method was extensively tested on the INbreast database and compared both visually and numerically with three state-of-the-art enhancement methods, with favorable results.

Keywords

Mammograms Region of interest enhancement Computer-aided diagnosis Texture model Markov random field 

Mathematics Subject Classification

60J25 60G60 62M40 68U10 62P10 

Notes

Acknowledgements

This research was supported by the Czech Science Foundation Project GAČR 19-12340S.

References

  1. 1.
    Bhateja, V., Misra, M., Urooj, S.: Non-linear polynomial filters for edge enhancement of mammogram lesions. Comput. Methods Progr. Biomed. 129, 125–134 (2016)CrossRefGoogle Scholar
  2. 2.
    Chang, C.M., Laine, A.: Coherence of multiscale features for enhancement of digital mammograms. IEEE Trans. Inf. Technol. Biomed. 3(1), 32–46 (1999)CrossRefGoogle Scholar
  3. 3.
    Dippel, S., Stahl, M., Wiemker, R., Blaffert, T.: Multiscale contrast enhancement for radiographies: Laplacian pyramid versus fast wavelet transform. IEEE Trans. Med. Imaging 21(4), 343–353 (2002)CrossRefGoogle Scholar
  4. 4.
    Erdem, C.E., Sankur, B., Tekalp, A.M.: Performance measures for video object segmentation and tracking. IEEE Trans. Image Process. 13(7), 937–951 (2004)CrossRefGoogle Scholar
  5. 5.
    Grim, J., Somol, P., Haindl, M., Daneš, J.: Computer-aided evaluation of screening mammograms based on local texture models. IEEE Trans. Image Process. 18(4), 765–773 (2009).  https://doi.org/10.1109/TIP.2008.2011168 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Haindl, M.: Texture synthesis. CWI Q. 4(4), 305–331 (1991)zbMATHGoogle Scholar
  7. 7.
    Haindl, M.: Visual data recognition and modeling based on local markovian models. In: Florack, L., Duits, R., Jongbloed, G., Lieshout, M.C., Davies, L. (eds.) Mathematical Methods for Signal and Image Analysis and Representation, Computational Imaging and Vision, vol. 41, pp. 241–259. Springer, London (2012).  https://doi.org/10.1007/978-1-4471-2353-8_14 Google Scholar
  8. 8.
    Haindl, M., Mikeš, S., Scarpa, G.: Unsupervised detection of mammogram regions of interest. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) Knowledge-Based Intelligent Information and Engineering Systems, LNAI, vol. 4694, pp. 33–40. Springer, Berlin (2007).  https://doi.org/10.1007/978-3-540-74829-8_5 CrossRefGoogle Scholar
  9. 9.
    Haindl, M., Remeš, V.: Efficient textural model-based mammogram enhancement. In: P.P. Rodrigues, M. Pechenizkiy, J. ao Gama, R. Cruz-Correia, J. Liu, A. Traina, P. Lucas, P. Soda (eds.) 2013 IEEE 26th International Symposium on Computer-Based Medical Systems (CBMS), pp. 522–523. IEEE, Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA (2013).  https://doi.org/10.1109/CBMS.2013.6627859
  10. 10.
    Haindl, M., Šimberová, S.: A Multispectral Image Line Reconstruction Method. Theory and Applications of Image Analysis, pp. 306–315. World Scientific Publishing Co., Singapore (1992)CrossRefGoogle Scholar
  11. 11.
    Mencattini, A., Salmeri, M., Lojacono, R., Frigerio, M., Caselli, F.: Mammographic images enhancement and denoising for breast cancer detection using dyadic wavelet processing. IEEE Trans. Instrum. Meas. 57(7), 1422–1430 (2008)CrossRefGoogle Scholar
  12. 12.
    Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso, J.S.: Inbreast: toward a full-field digital mammographic database. Acad. Radiol. 19(2), 236–248 (2012)CrossRefGoogle Scholar
  13. 13.
    Panetta, K., Zhou, Y., Agaian, S., Jia, H.: Nonlinear unsharp masking for mammogram enhancement. IEEE Trans. Inf. Technol. Biomed. 15(6), 918–928 (2011)CrossRefGoogle Scholar
  14. 14.
    Qi, H., Diakides, N.A.: Thermal infrared imaging in early breast cancer detection—a survey of recent research. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2, pp. 1109–1112. IEEE (2003)Google Scholar
  15. 15.
    Remeš, V., Haindl, M.: Region of interest contrast measures. Kybernetika 54(5), 978–990 (2018).  https://doi.org/10.14736/kyb-2018-5-0978. https://www.kybernetika.cz/content/2018/5/978/paper.pdf
  16. 16.
    Sakellaropoulos, P., Costaridou, L., Panayiotakis, G.: A wavelet-based spatially adaptive method for mammographic contrast enhancement. Phys. Med. Biol. 48(6), 787 (2003)CrossRefGoogle Scholar
  17. 17.
    Salvado, J., Roque, B.: Detection of calcifications in digital mammograms using wavelet analysis and contrast enhancement. In: 2005 IEEE International Workshop on Intelligent Signal Processing, pp. 200–205. IEEE (2005)Google Scholar
  18. 18.
    Simone, G., Pedersen, M., Hardeberg, J.Y.: Measuring perceptual contrast in digital images. J. Visual Commun. Image Represent. 23(3), 491–506 (2012)CrossRefGoogle Scholar
  19. 19.
    Tang, J., Liu, X., Sun, Q.: A direct image contrast enhancement algorithm in the wavelet domain for screening mammograms. IEEE J. Sel. Top. Signal Process. 3(1), 74–80 (2009).  https://doi.org/10.1109/JSTSP.2008.2011108 CrossRefGoogle Scholar
  20. 20.
    Taylor, P., Champness, J., Given-Wilson, R., Johnston, K., Potts, H.: Impact of computer-aided detection prompts on the sensitivity and specificity of screening mammography. Health Technol. Assess. 9(6), 1–58 (2005)CrossRefGoogle Scholar
  21. 21.
    Thangavel, K., Karnan, M., Sivakumar, R., Mohideen, A.: Cad system for preprocessing and enhancement of digital mammograms. Graphics, Vision and Image Processing pp. 55–60 (2007). http://www.icgst.com/gvip/v7/P1150527002.html
  22. 22.
    Tweed, T., Miguet, S.: Automatic detection of regions of interest in mammographies based on a combined analysis of texture and histogram. In: 2002 Proceedings of 16th International Conference on Pattern Recognition, vol. 2, pp. 448–452. IEEE Computer Society, Los Alamitos, CA, USA (2002).  https://doi.org/10.1109/ICPR.2002.1048335
  23. 23.
    Wang, H., Li, J.B., Wu, L., Gao, H.: Mammography visual enhancement in cad-based breast cancer diagnosis. Clin. Imaging 37(2), 273–282 (2013)CrossRefGoogle Scholar
  24. 24.
    Yan, Z., Zhang, Y., Liu, B., Zheng, J., Lu, L., Xie, Y., Liang, Z., Li, J.: Extracting hidden visual information from mammography images using conjugate image enhancement software. In: 2005 IEEE International Conference on, Information Acquisition, pp. 4775–4778. IEEE Engineering in Medicine and Biology Society, IEEE (2005)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pattern Recognition, Institute of Information Theory and AutomationCzech Academy of SciencesPragueCzech Republic

Personalised recommendations