Advertisement

Patch-based facial texture super-resolution by fitting 3D face models

  • Chengchao QuEmail author
  • Eduardo Monari
  • Tobias Schuchert
  • Jürgen Beyerer
Original Paper

Abstract

Incorporating 3D models for face hallucination (FH) is an ill-posed problem in light of the low-resolution (LR) conditions. To deal with the challenges, a specific 3D shape modeling approach targeting LR face images is first proposed. Based on a few automatically detected 2D facial feature points, an adaptive fitting scheme to relax the fixed correspondence assumption on the facial contour is devised, allowing for pose-invariant shape recovery. In order to exploit the obtained 3D shape and pose for FH, a resolution-aware approach for registering the training 3D faces with the LR input is designed to avoid warping the LR face. Finally, the LR image formation process is reformulated to facilitate super-resolution (SR) of the 3D facial texture. Using this interpretation, the Lucas–Kanade algorithm is extended for 3D deformable models to rectify the imperfect landmark-based fitting on LR images in a posterior fashion. In this way, the final patch-wise SR stage is able to produce realistic facial textures and synthesize self-occluded regions for non-frontal poses. All in all, our main contribution is a novel and pragmatic “2D landmarks \(\rightarrow \) 3D dense shape \(\rightarrow \) LR fitting refinement \(\rightarrow \) 3D FH” pipeline dedicated for the LR scenario. To justify its advantages, extensive evaluation is conducted on several publicly available datasets, revealing superior accuracy over state-of-the-art methods in 3D fitting and high-quality SR results for in-the-wild faces with an interocular distance of as few as five pixels. Moreover, the frontalized high-resolution texture is also verified to help boost the performance of cross-pose face recognition.

Keywords

Super-resolution Face hallucination 3D face reconstruction 3D Morphable Model Image formation model 

Notes

References

  1. 1.
    Wheeler, F.W., Liu, X., Tu, P.H.: Face recognition at a distance. In: Li, S.Z., Jain, A.K. (eds.) Handbook of Face Recognition, ch. 14, pp. 353–381. Springer, London, (2011)Google Scholar
  2. 2.
    Baker, S., Kanade, T.: Limits on superresolution and how to break them. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1167–1183 (2002)Google Scholar
  3. 3.
    Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1063–1074 (2003)Google Scholar
  4. 4.
    Zhu, X., Lei, Z., Liu, X., Shi, H., Li, S.Z.: Face alignment across large poses: a 3D solution. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 146–155 (2016)Google Scholar
  5. 5.
    Qu, C., Herrmann, C., Monari, E., Schuchert, T., Beyerer, J.: 3D vs. 2D: on the importance of registration for hallucinating faces under unconstrained poses. In: Proceedings of Conference on Computer and Robot Vision (CRV), pp. 139–146 (2015)Google Scholar
  6. 6.
    Qu, C., Monari, E., Schuchert, T., Beyerer, J.: Adaptive contour fitting for pose-invariant 3D face shape reconstruction. In: Proceedings of British Machine Vision Conference (BMVC), pp. 87.1–87.12 (2015)Google Scholar
  7. 7.
    Qu, C., Herrmann, C., Monari, E., Schuchert, T., Beyerer, J.: Robust 3D patch-based face hallucination. In: Proceedings of IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1105–1114 (2017)Google Scholar
  8. 8.
    Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 187–194 (1999)Google Scholar
  9. 9.
    Matthews, I., Baker, S.: Active appearance models revisited. Int. J. Comput. Vis. 60(2), 135–164 (2004)Google Scholar
  10. 10.
    Romdhani, S., Vetter, T.: Efficient, robust and accurate fitting of a 3D morphable model. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 1, 59–66 (2003)Google Scholar
  11. 11.
    Romdhani, S., Vetter, T.: Estimating 3D shape and texture using pixel intensity, edges, specular highlights, texture constraints and a prior. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) 2 986–993 (2005)Google Scholar
  12. 12.
    Romdhani, S., Blanz, V., Vetter, T.: Face identification by fitting a 3D morphable model using linear shape and texture error functions. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 3–19 (2002)Google Scholar
  13. 13.
    Zhang, L., Samaras, D.: Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 351–363 (2006)Google Scholar
  14. 14.
    Aldrian, O., Smith, W.A.P.: Inverse rendering of faces with a 3D morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1080–1093 (2013)Google Scholar
  15. 15.
    Blanz, V., Mehl, A., Vetter, T., Seidel, H.-P.: A statistical method for robust 3D surface reconstruction from sparse data. In: Proceedings of International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT), pp. 293–300 (2004)Google Scholar
  16. 16.
    Faggian, N., Paplinski, A. P., Sherrah, J.: Active appearance models for automatic fitting of 3D morphable models. In: Proceedings of IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), p. 90 (2006)Google Scholar
  17. 17.
    Faggian, N., Paplinski, A.P., Sherrah, J.: 3D morphable model fitting from multiple views. In: Proceedinbgs of IEEE International Conference on Automatic Face and Gesture Recognition (FG), pp. 1–6 (2008)Google Scholar
  18. 18.
    Jiang, D., Hu, Y., Yan, S., Zhang, L., Zhang, H., Gao, W.: Efficient 3D reconstruction for face recognition. Pattern Recognit. 38(6), 787–798 (2005)Google Scholar
  19. 19.
    Zhao, M., Chua, T.-S., Sim, T.: Morphable face reconstruction with multiple images. In: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition (FG), pp. 597–602 (2006)Google Scholar
  20. 20.
    Aldrian, O., Smith, W.A.P.: A linear approach of 3D face shape and texture recovery using a 3D morphable model. In: Proceedings of British Machine Vision Conference (BMVC), pp. 75.1–75.10 (2010)Google Scholar
  21. 21.
    Aldrian, O., Smith, W.A.P.: Learning the nature of generalisation errors in a 3D morphable model. In: Proceedings of IEEE International Conference on Image Processing (ICIP), pp. 4557–4560 (2010)Google Scholar
  22. 22.
    Rara, H.M., Farag, A.A., Davis, T.: Model based 3D shape recovery from single images of unknown pose and illumination using a small number of feature points. In: Proceedings of International Joint Conference on Biometrics (IJCB), pp. 1–7 (2011)Google Scholar
  23. 23.
    Dou, P., Wu, Y., Shah, S., Kakadiaris, I.A.: Robust 3D face shape reconstruction from single images via two-fold coupled structure learning. In: Proceedings of British Machine Vision Conference (BMVC), (2014)Google Scholar
  24. 24.
    Lee, Y.J., Lee, S.J., Park, K.R., Jo, J., Kim, J.: Single view-based 3D face reconstruction robust to self-occlusion. EURASIP J. Adv. Signal Process. 2012(1), 176 (2012)Google Scholar
  25. 25.
    Asthana, A., Marks, T.K., Jones, M.J., Tieu, K.H., Rohith, M.V.: Fully automatic pose invariant face recognition via 3D pose normalization. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 937–944 (2011)Google Scholar
  26. 26.
    Zhu, X., Lei, Z., Yan, J., Yi, D., Li, S.Z.: High-fidelity pose and expression normalization for face recognition in the wild. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 787–796 (2015)Google Scholar
  27. 27.
    Bas, A., Smith, W.A.P., Bolkart, T., Wuhrer, S.: Fitting a 3D morphable model to edges: a comparison between hard and soft correspondences. In: Proceedings of Asian Conference on Computer Vision Workshops (ACCVW), pp. 377–391 (2016)Google Scholar
  28. 28.
    Cao, C., Weng, Y., Lin, S., Zhou, K.: 3D shape regression for real-time facial animation. ACM Trans. Graph. 32(4), 41:1–41:10 (2013)zbMATHGoogle Scholar
  29. 29.
    Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by explicit shape regression. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2887–2894 (2012)Google Scholar
  30. 30.
    Cao, C., Hou, Q., Zhou, K.: Displaced dynamic expression regression for real-time facial tracking and animation. ACM Trans. Graph. 33(4), 43:1–43:10 (2014)Google Scholar
  31. 31.
    Jeni, L.A., Cohn, J.F., Kanade, T.: Dense 3D face alignment from 2D videos in real-time. Proc. IEEE Int. Conf. Autom. Face Gesture Recognit. (FG) 1, 1–8 (2015)Google Scholar
  32. 32.
    Tulyakov, S., Sebe, N.: Regressing a 3D face shape from a single image. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 3748–3755 (2015)Google Scholar
  33. 33.
    Jourabloo, A., Liu, X.: Large-pose face alignment via CNN-based dense 3D model fitting. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4188–4196 (2016)Google Scholar
  34. 34.
    Richardson, E., Sela, M., Or-El, R., Kimmel, R.: Learning detailed face reconstruction from a single image. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1259–1268 (2017)Google Scholar
  35. 35.
    Richardson, E., Sela, M., Kimmel, R.: 3D face reconstruction by learning from synthetic data. In: Proceedings of International Conference on 3D Vision (3DV), pp. 460–469 (2016)Google Scholar
  36. 36.
    Jeni, L.A., Tulyakov, S., Yin, L., Sebe, N., Cohn, J.F.: The first 3D face alignment in the wild (3DFAW) challenge. In: Proceedings of European Conference on Computer Vision Workshops (ECCVW), pp. 511–520 (2016)Google Scholar
  37. 37.
    Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20(3), 21–36 (2003)Google Scholar
  39. 39.
    Wheeler, F.W., Liu, X., Tu, P.H.: Multiframe super-resolution for face recognition. In: Proceedings of IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–6 (2007)Google Scholar
  40. 40.
    Yu, J., Bhanu, B.: Super-resolution of facial images in video with expression changes. In: Proceedings of IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 184–191 (2008)Google Scholar
  41. 41.
    Schuchert, T., Oser, F.: Optical flow estimation with confidence measures for super-resolution based on recursive robust total least squares. In: Proceedings of International Conference on Pattern Recognition Applications and Methods (ICPRAM), pp. 463–469 (2012)Google Scholar
  42. 42.
    Zhao, W., Sawhney, H.S.: Is super-resolution with optical flow feasible? In: Proceedings of European Conference on Computer Vision (ECCV), pp. 599–613 (2002)Google Scholar
  43. 43.
    Capel, D., Zisserman, A.: Super-resolution from multiple views using learnt image models. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) 2, 627–634 (2001)Google Scholar
  44. 44.
    Wang, X., Tang, X.: Hallucinating face by eigentransformation. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 35(3), 425–434 (2005)Google Scholar
  45. 45.
    Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22(2), 56–65 (2002)Google Scholar
  46. 46.
    Liu, C., Shum, H.-Y., Zhang, C.-S.: A two step approach to hallucinating faces: global parametric model and local nonparametric model. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) 1, 192–198 (2001)Google Scholar
  47. 47.
    Liu, C., Shum, H.-Y., Freeman, W.T.: Face hallucination: theory and practice. Int. J. Comput. Vis. 75(1), 115–134 (2007)Google Scholar
  48. 48.
    Jia, K., Gong, S.: Generalized face super resolution. IEEE Trans. Image Process. 17(6), 873–886 (2008)MathSciNetGoogle Scholar
  49. 49.
    Ma, X., Zhang, J., Qi, C.: Hallucinating face by position-patch. Pattern Recognit. 43(6), 2224–2236 (2010)Google Scholar
  50. 50.
    Jung, C., Jiao, L., Liu, B., Gong, M.: Positionpatch based face hallucination using convex optimization. IEEE Signal Process. Lett. 18(6), 367–370 (2011)Google Scholar
  51. 51.
    Jiang, J., Hu, R., Han, Z., Lu, T., Huang, K.: Position-patch based face hallucination via locality-constrained representation. In: Proceedings of IEEE International Conference on Multimedia and Expo (ICME), pp. 212–217 (2012)Google Scholar
  52. 52.
    Jiang, J., Hu, R., Han, Z., Wang, Z., Lu, T., Chen, J.: Locality-constraint iterative neighbor embedding for face hallucination. In: Proceedings of IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2013)Google Scholar
  53. 53.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. Proc. Int. Joint Conf. Artif. Intell. (IJCAI) 2, 674–679 (1981)Google Scholar
  54. 54.
    Hu, Y., Lam, K.-M., Qiu, G., Shen, T.: From local pixel structure to global image superresolution: a new face hallucination framework. IEEE Trans. Image Process. 20(2), 433–445 (2011)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 25–36 (2004)Google Scholar
  56. 56.
    Tappen, M.F., Liu, C.: A Bayesian approach to alignment-based image hallucination. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 236–249 (2012)Google Scholar
  57. 57.
    Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 24:1–24:11 (2009)Google Scholar
  58. 58.
    Liu, C., Yuen, J., Torralba, A.: SIFT ow: dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 978–994 (2011)Google Scholar
  59. 59.
    Innerhofer, P., Pock, T.: A convex approach for image hallucination. In: Proceedings of Annual Workshop of the Austrian Association for Pattern Recognition (ÖAGM-AAPR), (2013)Google Scholar
  60. 60.
    Yang, C.-Y., Liu, S., Yang, M.-H.: Structured face hallucination. In: Procedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1099–1106 (2013)Google Scholar
  61. 61.
    Jin, Y., Bouganis, C.: Face hallucination revisited: a joint framework. In: Proceedings of IEEE International Conference on Image Processing (ICIP), pp. 981–985 (2013)Google Scholar
  62. 62.
    Jin, Y., Bouganis, C.-S.: Robust multi-image based blind face hallucination. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5252–5260 (2015)Google Scholar
  63. 63.
    Kolouri, S., Rohde, G.K.: Transport-based single frame super resolution of very low resolution face images. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4876–4884 (2015)Google Scholar
  64. 64.
    Ambrosio, L.: Optimal transport maps in Monge Kantorovich problem. Proc. Int. Congr. Math. (ICM) 3, 131–140 (2002)Google Scholar
  65. 65.
    Zhou, E., Fan, H., Cao, Z., Jiang, Y., Yin, Q.: Learning face hallucination in the wild. In: Proceedings of AAAI Conference on Artificial Intelligence (AAAI), pp. 3871–3877 (2015)Google Scholar
  66. 66.
    Yu, X., Porikli, F.: Ultra-resolving face images by discriminative generative networks. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 318–333 (2016)Google Scholar
  67. 67.
    Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 2018–2025 (2011)Google Scholar
  68. 68.
    Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (NIPS), pp. 2672–2680 (2014)Google Scholar
  69. 69.
    Zhu, S., Liu, S., Loy, C.C., Tang, X.: Deep cascaded bi-network for face hallucination. In: Proceedings European Conference on Computer Vision (ECCV), pp. 614–630 (2016)Google Scholar
  70. 70.
    Mortazavian, P., Kittler, J., Christmas, W.: 3D-assisted facial texture super-resolution. In: Proceedings British Machine Vision Conference (BMVC), pp. 119.1–119.11 (2009)Google Scholar
  71. 71.
    Schumacher, M., Piotraschke, M., Blanz, V.: Hallucination of facial details from degraded images using 3D face models. Image Vis. Comput. 40, 49–64 (2015)Google Scholar
  72. 72.
    Dessein, A., Smith, W.A.P., Wilson, R.C., Hancock, E.R.: Example-based modeling of facial texture from deficient data. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 3898–3906 (2015)Google Scholar
  73. 73.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 484–498 (1998)Google Scholar
  74. 74.
    Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3D face model for pose and illumination invariant face recognition. In: Proceedings of IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 296–301 (2009)Google Scholar
  75. 75.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, New York (2004). ISBN: 0521540518zbMATHGoogle Scholar
  76. 76.
    Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)zbMATHGoogle Scholar
  77. 77.
    Qu, C., Monari, E., Schuchert, T., Beyerer, J.: Fast, robust and automatic 3D face model reconstruction from videos. In: Proceedings of IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 113–118 (2014)Google Scholar
  78. 78.
    Belhumeur, P.N., Jacobs, D.W., Kriegman, D.J., Kumar, N.: Localizing parts of faces using a consensus of exemplars. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 545–552 (2011)Google Scholar
  79. 79.
    Yan, J., Lei, Z., Yi, D., Li, S.Z.: Learn to combine multiple hypotheses for accurate face alignment. In: Proceedings of IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 392–396 (2013)Google Scholar
  80. 80.
    Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Syst. J. 4(1), 25–30 (1965)Google Scholar
  81. 81.
    Fitzgibbon, A.W.: Robust registration of 2D and 3D point sets. In: Proceedings of British Machine Vision Conference (BMVC), pp. 411–420 (2001)Google Scholar
  82. 82.
    Hassner, T., Harel, S., Paz, E., Enbar, R.: Effective face frontalization in unconstrained images. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4295–4304 (2015)Google Scholar
  83. 83.
    Tena Rodríguez, J.R.: 3D face modelling for 2D+3D face recognition. In: PhD thesis, University of Surrey, (2007)Google Scholar
  84. 84.
    Dedeoǧglu, G., Baker, S., Kanade, T.: Resolution aware fitting of active appearance models to low resolution images. In: Proceedings of European Conference on Computer Vision (ECCV), vol. 2, pp. 83–97. (2006)Google Scholar
  85. 85.
    Herrmann, C., Qu, C., Willersinn, D., Beyerer, J.: Impact of resolution and image quality on video face analysis. In: Proceedings of IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6 (2015)Google Scholar
  86. 86.
    Yang, J., Huang, T.: Image super-resolution: historical overview and future challenges. In: Milanfar, P. (ed.) Super-Resoluton Imaging, ch. 1, pp. 1–33. CRC Press, Boca Raton, (2010)Google Scholar
  87. 87.
    Efrat, N., Glasner, D., Apartsin, A., Nadler, B., Levin, A.: Accurate blur models vs. image priors in single image super-resolution. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 2832–2839 (2013)Google Scholar
  88. 88.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2657–2664 (2011)Google Scholar
  89. 89.
    Baker, S., Matthews, I.: Lucas-Kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56(3), 221–255 (2004)Google Scholar
  90. 90.
    Szeliski, R.: Image formation. In: Gries, D., Schneider, F.B. (eds.) Computer Vision: Algorithms and Applications, Springer, London, ch. 2, pp. 27–86 (2011)Google Scholar
  91. 91.
    Chang, H., Yeung, D.-Y., Xiong, Y.: Super resolution through neighbor embedding. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) 1, 275–282 (2004)Google Scholar
  92. 92.
    Qu, C., Monari, E., Schuchert, T., Beyerer, J.: Realistic texture extraction for 3D face models robust to self-occlusion. In: Proceedings of SPIE, Image Processing: Machine Vision Applications VIII, p. 94050P (2015)Google Scholar
  93. 93.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)Google Scholar
  94. 94.
    Wang, N., Tao, D., Gao, X., Li, X., Li, J.: A comprehensive survey to face hallucination. Int. J. Comput. Vis. 106(1), 9–30 (2014)Google Scholar
  95. 95.
    Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-PIE. Image Vis. Comput. 28(5), 807–813 (2010)Google Scholar
  96. 96.
    Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: the first facial landmark localization challenge. In: Proceedings of IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 397–403 (2013)Google Scholar
  97. 97.
    Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)Google Scholar
  98. 98.
    Qu, C., Luo, D., Monari, E., Schuchert, T., Beyerer, J.: Capturing ground truth super-resolution data. In: Proceedings of IEEE International Conference on Image Processing (ICIP), pp. 2812–2816 (2016)Google Scholar
  99. 99.
    Pinto, N., Stone, Z., Zickler, T., Cox, D.: Scaling up biologically-inspired computer vision: a case study in unconstrained face recognition on Facebook. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 35–42 (2011)Google Scholar
  100. 100.
    Qu, C., Gao, H., Monari, E., Beyerer, J., Thiran, J.-P.: Towards robust cascaded regression for face alignment in the wild. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1–9 (2015)Google Scholar
  101. 101.
    Mortazavian, P.: Face recognition in low resolution using a 3D morphable model. In: PhD Thesis, University of Surrey, (2013)Google Scholar
  102. 102.
    Messer, K., Matas, J., Kittler, J., Luettin, J., Maître, G.: XM2VTSDB: the extended M2VTS database. In: Proceedings of International Conference on Audio- and Video-Based Biometric Person Authentication (AVBPA), (1999)Google Scholar
  103. 103.
    Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 3730–3738 (2015)Google Scholar
  104. 104.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with Local Binary Patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)zbMATHGoogle Scholar
  105. 105.
    Wolf, L., Hassner, T., Taigman, Y.: Descriptor based methods in the wild. In: Proceedings of European Conference on Computer Vision Workshops (ECCVW), (2008)Google Scholar
  106. 106.
    Anwar, S., Huynh, C. P., Porikli, F.: Class specific image deblurring. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 495–503 (2015)Google Scholar
  107. 107.
    Chu, B., Romdhani, S., Chen, L.: 3D-aided face recognition robust to expression and pose variations. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1907–1914 (2014)Google Scholar
  108. 108.
    Dong, Y., Tao, D., Li, X.: Nonnegative multiresolution representation-based texture image classification. ACM Trans. Intell. Syst. Technol. 7(1), 4:1–4:21 (2015)Google Scholar
  109. 109.
    Dong, Y., Tao, D., Li, X., Ma, J., Pu, J.: Texture classification and retrieval using shear lets and linear regression. IEEE Trans. Cybern. 45(3), 358–369 (2015)Google Scholar
  110. 110.
    Huang, J.-B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5197–5206 (2015)Google Scholar
  111. 111.
    Li, X., Liu, K., Dong, Y., Tao, D.: Patch alignment manifold matting. In: IEEE Transactions on Neural Networks and Learning Systems, (2018)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chengchao Qu
    • 1
    Email author
  • Eduardo Monari
    • 2
  • Tobias Schuchert
    • 3
  • Jürgen Beyerer
    • 1
  1. 1.Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (Fraunhofer IOSB)KarlsruheGermany
  2. 2.Corporate Research and Advance Engineering CR/APARobert Bosch GmbHRenningenGermany
  3. 3.Interface ElectronicsBerker GmbH & Co. KGKarlsruheGermany

Personalised recommendations