A closed-form single-pose calibration method for the camera–projector system

  • Zexi FengEmail author
  • Zhiquan Cheng
  • Zhan Song
Original Paper


To improve the calibration efficiency of the structured light stereo vision system, a closed-form single-pose calibration method is proposed. Previous works calibrate the structured light stereo vision system via the planar-based method since the world coordinates of the projected pixels are easy to find. But the disadvantage of these methods is that multiple poses are required, so that the mechanical movement is necessary in these calibration methods. In this paper, the inherent geometry between the spheres and their image is exploited deeply. Thus, a sphere-based calibration method is proposed. The proposed method first calibrates the camera from the image of the absolute conic through an improved algorithm. Then, the three-dimensional coordinates of the projected pixels are found via the inherent geometrical relation. Next, the projector is calibrated using the direct linear method. Finally, the distortion of the projector is found through the nonlinear optimization method with an improved updating direction. Experiments demonstrate that not only the calibration efficiency is improved, but also the calibration accuracy is improved.


Calibration IAC Optimization 



  1. 1.
    Posdamer, J.L., Altschuler, M.D.: Surface measurement by space-encoded projected beam systems. Comput. Graph. Image Process. 18(1), 1–17 (1982)CrossRefGoogle Scholar
  2. 2.
    Inokuchi, S., Sato, K., Matsuda, F.: Range imaging system for 3-D object recognition. In: Proc. ICPR, pp. 806–808 (1984)Google Scholar
  3. 3.
    Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. Proc. CVPR 1, 195–202 (2003)Google Scholar
  4. 4.
    Abdel-Aziz, Y., Karara, H.: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. In: Symposium on Close Range Photogrammetry, pp. 1–18 (1971)Google Scholar
  5. 5.
    Faig, W.: Calibration of close-range photogrammetry systems: mathematical formulation. Photogramm. Eng. Remote Sens. 41(12), 1479–1486 (1975)Google Scholar
  6. 6.
    Weng, J.Y., Cohen, P., Herniou, M.: Camera calibration with distortion models and accuracy evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 14(10), 965–980 (1992)CrossRefGoogle Scholar
  7. 7.
    Faugeras, O.: Modeling and calibrating cameras. In: Three-Dimensional Computer Vision: A Geometric Viewpoint, pp. 33–66. MIT, London (1993)Google Scholar
  8. 8.
    Hartley, R., Zisserman, A.: Camera geometry and single view geometry. In: Hartley, R., Zisserman, A. (eds.) Multiple View Geometry in Computer Vision, 2nd edn, pp. 151–176. Cambridge University, Cambridge (2003)Google Scholar
  9. 9.
    Zhang, Z.Y.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)CrossRefGoogle Scholar
  10. 10.
    Audet, S., Okutomi, M.: A user-friendly method to geometrically calibrate projector-camera systems. In: CVPR Workshpos, vol 1, 2, pp. 586–593 (2009)Google Scholar
  11. 11.
    Song, W., Xie, X., Li, G.L., Wang, Z.H.: Flexible method to calibrate projector–camera systems with high accuracy. Electron. Lett. 50(23), 1685–1686 (2014)CrossRefGoogle Scholar
  12. 12.
    Beiwen, L., Song, Z.: Structured light system calibration method with optimal fringe angle. Appl. Opt. 53(33), 7942–7950 (2014)CrossRefGoogle Scholar
  13. 13.
    Li, T.T., Hu, F., Geng, Z.: Geometric calibration of a camera–projector 3D imaging system. In: Proc. VRCAI, pp. 187–194 (2011)Google Scholar
  14. 14.
    Lu, Y., Payandeh, S.: On the sensitivity analysis of camera calibration from images of spheres. Comput. Vis. Image Underst. 114(1), 8–20 (2010)CrossRefGoogle Scholar
  15. 15.
    Ying, X.H., Hu, Z.Y.: Catadioptric camera calibration using geometric invariants. Trans. Pattern Anal. Mach. Intell. 26(10), 1260–1271 (2004)CrossRefGoogle Scholar
  16. 16.
    Zhang, H., Wong, K.Y.K., Zhang, G.Q.: Camera calibration from images of spheres. Trans. Pattern Anal. Mach. Intell. 29(3), 499-U1 (2007)CrossRefGoogle Scholar
  17. 17.
    Ying, X.H., Zha, H.B.: A novel linear approach to camera calibration from sphere images. In: Proc. ICPR, vol 1, pp. 535–538, (2006)Google Scholar
  18. 18.
    Xu, J., Douel, J., Zhao, J., Chen, K.: A simple calibration method for structured light-based 3D profile measurement. Opt. Laser Technol. 48(2), 187–193 (2013)CrossRefGoogle Scholar
  19. 19.
    Douet, J., Xu, J., Chen, K.: Sphere-based geometrical calibration method for structured light surface measurement systems. Adv. Mater. Res. 571, 433–438 (2012)CrossRefGoogle Scholar
  20. 20.
    Valkenburg, R.J., McIvor, A.M.: Accurate 3d measurement using a structured light system. Image Vis. Comput. 16(2), 99–110 (1998)CrossRefGoogle Scholar
  21. 21.
    Coleman, T.F., Li, Y.Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6(2), 418–445 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cambridge (1993)Google Scholar
  23. 23.
    Moré, J.J.: The Levenberg-Marquardt algorithm: implementation and theory. In: Watson, G.A. (ed.) Numerical Analysis, vol. 630, pp. 105–116. Springer, Berlin (1978)CrossRefGoogle Scholar
  24. 24.
    Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, vol. I, pp. 28–48. Addison-Wesley, Boston (1992)Google Scholar
  25. 25.
    Fitzgibbon, A.W., Pilu, M., Fisher, R.B.: Direct least squares fitting of ellipses. Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999)CrossRefGoogle Scholar
  26. 26.
    Chen, R., Xu, J., Chen, H.P., Su, J.H., Zhang, Z.H., Chen, K.: Accurate calibration method for camera and projector in fringe patterns measurement system. Appl. Opt. 55(16), 4293–4300 (2016)CrossRefGoogle Scholar
  27. 27.
    Resch, C., Naik, H., Keitler, P., Benkhardt, S., Klinker, G.: On-site semi-automatic calibration and registration of a projector-camera system using arbitrary object with known geometry. Trans. Vis. Comput. Graph. 21(11), 1211–1220 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.ShenZhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
  2. 2.University of Chinese Academy of SciencesShijingshan District, BeijingChina
  3. 3.Nanjing Vocational College of Information TechnologyNanjingChina

Personalised recommendations