Machine Vision and Applications

, Volume 29, Issue 5, pp 765–788 | Cite as

Action detection fusing multiple Kinects and a WIMU: an application to in-home assistive technology for the elderly

  • Albert Clapés
  • Àlex Pardo
  • Oriol Pujol Vila
  • Sergio Escalera
Original Paper


We present a vision-inertial system which combines two RGB-Depth devices together with a wearable inertial movement unit in order to detect activities of the daily living. From multi-view videos, we extract dense trajectories enriched with a histogram of normals description computed from the depth cue and bag them into multi-view codebooks. During the later classification step a multi-class support vector machine with a RBF-\(\mathcal {X}^2\) kernel combines the descriptions at kernel level. In order to perform action detection from the videos, a sliding window approach is utilized. On the other hand, we extract accelerations, rotation angles, and jerk features from the inertial data collected by the wearable placed on the user’s dominant wrist. During gesture spotting, a dynamic time warping is applied and the aligning costs to a set of pre-selected gesture sub-classes are thresholded to determine possible detections. The outputs of the two modules are combined in a late-fusion fashion. The system is validated in a real-case scenario with elderly from an elder home. Learning-based fusion results improve the ones from the single modalities, demonstrating the success of such multimodal approach.


Multimodal activity detection Computer vision Inertial sensors Dense trajectories Dynamic time warping Assistive technology 



This work was partly supported by the spanish project TIN2016-74946-P and CERCA Programme / Generalitat de Catalunya. The work of Albert Clapés was supported by SUR-DEC of the Generalitat de Catalunya and FSE. We would also like to thank the SARQuavitae Claret elder home and all the people who volunteered for the recording of the dataset.


  1. 1.
    Adlam, T., Faulkner, R., Orpwood, R., Jones, K., Macijauskiene, J., Budraitiene, A.: The installation and support of internationally distributed equipment for people with dementia. IEEE Trans. Inf. Technol. Biomed. 8(3), 253–257 (2004)CrossRefGoogle Scholar
  2. 2.
    Akl, A., Valaee, S.: Accelerometer-based gesture recognition via dynamic-time warping, affinity propagation, & compressive sensing. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 2270–2273. IEEE (2010)Google Scholar
  3. 3.
    Alexandre, L.A.: 3D descriptors for object and category recognition: a comparative evaluation. In: Workshop on Color-Depth Camera Fusion in Robotics at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, vol. 1. Citeseer (2012)Google Scholar
  4. 4.
    Amft, O., Junker, H., Troster, G.: Detection of eating and drinking arm gestures using inertial body-worn sensors. In: Proceedings of the 9th IEEE International Symposium on Wearable Computers, 2005, pp. 160–163 (2005)Google Scholar
  5. 5.
    Avci, A., Bosch, S., Marin-Perianu, M., Marin-Perianu, R., Havinga, P.: Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: A survey. In: 2010 23rd International Conference on Architecture of computing systems (ARCS), pp. 1–10. VDE (2010)Google Scholar
  6. 6.
    Bagalà, F., Becker, C., Cappello, A., Chiari, L., Aminian, K., Hausdorff, J.M., Zijlstra, W., Klenk, J.: Evaluation of accelerometer-based fall detection algorithms on real-world falls. PLoS One 7(5), e37,062 (2012)CrossRefGoogle Scholar
  7. 7.
    Bagheri, M., Gao, Q., Escalera, S., Clapes, A., Nasrollahi, K., Holte, M.B., Moeslund, T.B.: Keep it accurate and diverse: Enhancing action recognition performance by ensemble learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 22–29 (2015)Google Scholar
  8. 8.
    Banerjee, T., Keller, J.M., Skubic, M., Stone, E.: Day or night activity recognition from video using fuzzy clustering techniques. IEEE Trans. Fuzzy Syst. 22(3), 483–493 (2014)CrossRefGoogle Scholar
  9. 9.
    Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Pervasive Computing, pp. 1–17. Springer (2004)Google Scholar
  10. 10.
    Barbosa, I.B., Cristani, M., Del Bue, A., Bazzani, L., Murino, V.: Re-identification with rgb-d sensors. In: Computer Vision–ECCV 2012. Workshops and Demonstrations, pp. 433–442. Springer (2012)Google Scholar
  11. 11.
    Bautista, M.A., Hernández-Vela, A., Ponce, V., Perez-Sala, X., Baró, X., Pujol, O., Angulo, C., Escalera, S.: Probability-based dynamic time warping for gesture recognition on rgb-d data. In: Advances in depth image analysis and applications, pp. 126–135. Springer (2013)Google Scholar
  12. 12.
    Ben Hadj Mohamed, A., Val, T., Andrieux, L., Kachouri, A.: Assisting people with disabilities through kinect sensors into a smart house. In: 2013 International Conference on Computer Medical Applications (ICCMA), pp. 1–5. IEEE (2013)Google Scholar
  13. 13.
    Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005. vol. 2, pp. 1395–1402. IEEE (2005)Google Scholar
  14. 14.
    Bo, A., Hayashibe, M., Poignet, P.: Joint angle estimation in rehabilitation with inertial sensors and its integration with kinect. In: EMBC’11: 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3479–3483. IEEE (2011)Google Scholar
  15. 15.
    Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001)CrossRefGoogle Scholar
  16. 16.
    Booranrom, Y., Watanapa, B., Mongkolnam, P.: Smart bedroom for elderly using kinect. In: Computer Science and Engineering Conference (ICSEC), 2014 International, pp. 427–432. IEEE (2014)Google Scholar
  17. 17.
    Botia, J.A., Villa, A., Palma, J.: Ambient assisted living system for in-home monitoring of healthy independent elders. Expert Syst. Appl. 39(9), 8136–8148 (2012)CrossRefGoogle Scholar
  18. 18.
    Bouchard, K., Bilodeau, J.S., Fortin-Simard, D., Gaboury, S., Bouchard, B., Bouzouane, A.: Human activity recognition in smart homes based on passive RFID localization. In: Proceedings of the 7th International Conference on Pervasive Technologies Related to Assistive Environments, p 1 (2014)Google Scholar
  19. 19.
    Brendel, W., Todorovic, S.: Activities as time series of human postures. In: Computer Vision–ECCV 2010, pp. 721–734. Springer (2010)Google Scholar
  20. 20.
    Bulling, A., Blanke, U.L.F., Schiele, B.: A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv. 46(3), 1–33 (2014)CrossRefGoogle Scholar
  21. 21.
    Casale, P.: Approximate ensemble methods for physical activity recognition applications. ELCVIA 13(2), 22–23 (2014)CrossRefGoogle Scholar
  22. 22.
    Chang, S.F., Ellis, D., Jiang, W., Lee, K., Yanagawa, A., Loui, A.C., Luo, J.: Large-scale multimodal semantic concept detection for consumer video. In: Proceedings of the International Workshop on Workshop on Multimedia Information Retrieval, pp. 255–264. ACM (2007)Google Scholar
  23. 23.
    Chattopadhyay, P., Roy, A., Sural, S., Mukhopadhyay, J.: Pose depth volume extraction from rgb-d streams for frontal gait recognition. J. Vis. Commun. Image Represent. 25(1), 53–63 (2014)CrossRefGoogle Scholar
  24. 24.
    Chen, C.C., Aggarwal, J.: Modeling human activities as speech. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3425–3432. IEEE (2011)Google Scholar
  25. 25.
    Clapés, A., Reyes, M., Escalera, S.: Multi-modal user identification and object recognition surveillance system. Pattern Recognit. Lett. 34(7), 799–808 (2013)CrossRefGoogle Scholar
  26. 26.
    Crispim, C.F., Bathrinarayanan, V., Fosty, B., Konig, A., Romdhane, R., Thonnat, M., Bremond, F.: Evaluation of a monitoring system for event recognition of older people. In: 10th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 165–170. IEEE (2013)Google Scholar
  27. 27.
    Daponte, P., De Vito, L., Sementa, C.: A wireless-based home rehabilitation system for monitoring 3D movements. MeMeA 2013—IEEE International Symposium on Medical Measurements and Applications, Proceedings, pp. 282–287 (2013).
  28. 28.
    Delachaux, B., Rebetez, J., Perez-Uribe, A., Mejia, H.F.S.: Indoor activity recognition by combining one-vs.-all neural network classifiers exploiting wearable and depth sensors. In: Advances in Computational Intelligence, pp. 216–223. Springer (2013)Google Scholar
  29. 29.
    Dell’Acqua, P., Klompstra, L.V., Jaarsma, T., Samini, A.: An assistive tool for monitoring physical activities in older adults. In: 2013 IEEE 2nd International Conference on Serious Games and Applications for Health (SeGAH), pp. 1–6. IEEE (2013)Google Scholar
  30. 30.
    Dubois, A., Charpillet, F.: Human activities recognition with rgb-depth camera using hmm. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4666–4669. IEEE (2013)Google Scholar
  31. 31.
    Escalera, S., Bar, X., Gonzlez, J., Bautista, M.A., Madadi, M., Reyes, M., Ponce, V., Escalante, H.J., Shotton, J., Guyon, I.: Chalearn looking at people challenge 2014: dataset and results. In: ECCV Workshops (2014)Google Scholar
  32. 32.
    Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Image analysis, pp. 363–370. Springer (2003)Google Scholar
  33. 33.
    Fenu, G., Steri, G.: IMU based post-traumatic rehabilitation assessment. In: 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies, ISABEL 2010 pp. 1–4 (2010).
  34. 34.
    Fernandez-Sanchez, E.J., Diaz, J., Ros, E.: Background subtraction based on color and depth using active sensors. Sensors 13(7), 8895–8915 (2013)CrossRefGoogle Scholar
  35. 35.
    Gaidon, A., Harchaoui, Z., Schmid, C.: Temporal localization of actions with actoms. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2782–2795 (2013)CrossRefGoogle Scholar
  36. 36.
    Georgi, M., Amma, C., Schultz, T.: Recognizing hand and finger gestures with IMU based motion and EMG based muscle activity sensing. In: Proceedings of the international conference on bio-inspired systems and signal processing, pp. 99–108 (2015).,
  37. 37.
    Gkioxari, G., Malik, J.: Finding action tubes (2014). arXiv preprint arXiv:1411.6031
  38. 38.
    Golby, C., Raja, V., Hundt, G.L., Badiyani, S.: A low cost ‘activities of daily living’ assessment system for the continual assessment of post-stroke patients, from inpatient/outpatient rehabilitation through to telerehabilitation. Successes and Failures in Telehealth. (2011)
  39. 39.
    Gunes, H., Piccardi, M.: Affect recognition from face and body: early fusion vs. late fusion. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3437–3443 (2005).
  40. 40.
    Helten, T., Muller, M., Seidel, H.P., Theobalt, C.: Real-time body tracking with one depth camera and inertial sensors. In: 2013 IEEE International Conference on computer vision (ICCV), pp. 1105–1112. IEEE (2013)Google Scholar
  41. 41.
    Hernández-Vela, A., Bautista, M.A., Perez-Sala, X., Ponce, V., Baró, X., Pujol, O., Angulo, C., Escalera, S.: Bovdw: bag-of-visual-and-depth-words for gesture recognition. In: 2012 21st international conference on pattern recognition (ICPR), pp. 449–452. IEEE (2012)Google Scholar
  42. 42.
    Hondori, H.M., Khademi, M., Lopes, C.V.: Monitoring intake gestures using sensor fusion (microsoft kinect and inertial sensors) for smart home tele-rehab setting. In: 2012 1st Annual IEEE Healthcare Innovation Conference (2012)Google Scholar
  43. 43.
    Hongeng, S., Nevatia, R., Bremond, F.: Video-based event recognition: activity representation and probabilistic recognition methods. Comput. Vis. Image Underst. 96(2), 129–162 (2004)CrossRefGoogle Scholar
  44. 44.
    Jafari, R., Li, W., Bajcsy, R., Glaser, S., Sastry, S.: Physical activity monitoring for assisted living at home. In: 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007), pp. 213–219. Springer (2007)Google Scholar
  45. 45.
    Jain, M., Van Gemert, J., Jégou, H., Bouthemy, P., Snoek, C.G.: Action localization with tubelets from motion. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 740–747. IEEE (2014)Google Scholar
  46. 46.
    Jhuang, H., Gall, J., Zuffi, S., Schmid, C., Black, M.J.: Towards understanding action recognition. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 3192–3199. IEEE (2013)Google Scholar
  47. 47.
    Junker, H., Amft, O., Lukowicz, P., Tröster, G.: Gesture spotting with body-worn inertial sensors to detect user activities. Pattern Recognit. 41(2008), 2010–2024 (2010). zbMATHGoogle Scholar
  48. 48.
    Karantonis, D.M., Narayanan, M.R., Mathie, M., Lovell, N.H., Celler, B.G.: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Inf. Technol. Biomed. 10(1), 156–167 (2006)CrossRefGoogle Scholar
  49. 49.
    Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: 2014 IEEE conference on computer vision and pattern recognition (CVPR), pp. 1725–1732. IEEE (2014)Google Scholar
  50. 50.
    Ke, Y., Sukthankar, R., Hebert, M.: Volumetric features for video event detection. Int. J. Comput. Vis. 88(3), 339–362 (2010)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Kim, J., Yang, S., Gerla, M.: Stroketrack: wireless inertial motion tracking of human arms for stroke telerehabilitation. In: Proceedings of the First ACM Workshop on Mobile Systems, Applications, and Services for Healthcare, p. 4. ACM (2011)Google Scholar
  52. 52.
    Kim, T.K., Cipolla, R.: Canonical correlation analysis of video volume tensors for action categorization and detection. IEEE Trans. Pattern Anal. Mach. Intell. 31(8), 1415–1428 (2009)CrossRefGoogle Scholar
  53. 53.
    Kong, W., Sessa, S., Cosentino, S., Zecca, M., Saito, K., Wang, C., Imtiaz, U., Lin, Z., Bartolomeo, L., Ishii, H., Ikai, T., Takanishi, A.: Development of a real-time IMU-based motion capture system for gait rehabilitation. In: Robotics and Biomimetics (ROBIO), IEEE International Conference on 2013, pp. 2100–2105 (2013)Google Scholar
  54. 54.
    Kratz, S., Back, M.: Towards accurate automatic segmentation of IMU-tracked motion gestures. In: Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, ACM, pp. 1337–1342 (2015)Google Scholar
  55. 55.
    Kwolek, B., Kepski, M.: Improving fall detection by the use of depth sensor and accelerometer. Neurocomputing 168, 637–645 (2015)CrossRefGoogle Scholar
  56. 56.
    Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2–3), 107–123 (2005)CrossRefGoogle Scholar
  57. 57.
    Laptev, I., Marszałek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8. IEEE (2008)Google Scholar
  58. 58.
    Lara, D., Labrador, Ma.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 15(3), 1192–1209 (2013)CrossRefGoogle Scholar
  59. 59.
    Lei, J., Ren, X., Fox, D.: Fine-grained kitchen activity recognition using rgb-d. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 208–211. ACM (2012)Google Scholar
  60. 60.
    Li, B.Y., Mian, A.S., Liu, W., Krishna, A.: Using kinect for face recognition under varying poses, expressions, illumination and disguise. In: 2013 IEEE Workshop on Applications of Computer Vision (WACV), pp. 186–192. IEEE (2013)Google Scholar
  61. 61.
    Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of 3d points. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 9–14. IEEE (2010)Google Scholar
  62. 62.
    Liang, B., Zheng, L.: Spatio-temporal pyramid cuboid matching for action recognition using depth maps. In: International Conference on Image Processing 2015 (ICIP 2015) (2015)Google Scholar
  63. 63.
    Liu, J., Zhong, L., Wickramasuriya, J., Vasudevan, V.: uwave: accelerometer-based personalized gesture recognition and its applications. Pervasive Mobile Comput. 5(6), 657–675 (2009)CrossRefGoogle Scholar
  64. 64.
    Liu, K., Chen, C., Jafari, R., Kehtarnavaz, N.: Fusion of inertial and depth sensor data for robust hand gesture recognition. IEEE Sens. J. 14(6), 1898–1903 (2014)CrossRefGoogle Scholar
  65. 65.
    Lombriser, C., Bharatula, N.B., Roggen, D., Tröster, G.: On-body activity recognition in a dynamic sensor network. In: Proceedings of the ICST 2nd International Conference on Body Area Networks, p. 17. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2007)Google Scholar
  66. 66.
    Luinge, H.J., Veltink, P.H.: Measuring orientation of human body segments using miniature gyroscopes and accelerometers. Med. Biol. Eng. Comput. 43(2), 273–282 (2005)CrossRefGoogle Scholar
  67. 67.
    Mace, D., Gao, W., Coskun, A.: Accelerometer-based hand gesture recognition using feature weighted Naïve Bayesian classifiers and dynamic time warping. In: Proceedings of the Companion Publication of the 2013 International Conference on Intelligent user interfaces companion, pp. 83–84. ACM (2013)Google Scholar
  68. 68.
    Memon, M., Wagner, S.R., Pedersen, C.F., Beevi, F.H.A., Hansen, F.O.: Ambient assisted living healthcare frameworks, platforms, standards, and quality attributes. Sensors 14(3), 4312–4341 (2014)CrossRefGoogle Scholar
  69. 69.
    Mogelmose, A., Bahnsen, C., Moeslund, T.B., Clapés, A., Escalera, S.: Tri-modal person re-identification with rgb, depth and thermal features. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 301–307. IEEE (2013)Google Scholar
  70. 70.
    Mubashir, M., Shao, L., Seed, L.: A survey on fall detection: principles and approaches. Neurocomputing 100, 144–152 (2013)CrossRefGoogle Scholar
  71. 71.
    Nait-Charif, H., McKenna, S.J.: Activity summarisation and fall detection in a supportive home environment. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 4, pp. 323–326. IEEE (2004)Google Scholar
  72. 72.
    Natarajan, P., Wu, S., Vitaladevuni, S., Zhuang, X., Tsakalidis, S., Park, U., Prasad, R., Natarajan, P.: Multimodal feature fusion for robust event detection in web videos. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1298–1305 (2012).
  73. 73.
    Ni, B., Wang, G., Moulin, P.: Rgbd-hudaact: a color-depth video database for human daily activity recognition. In: Fossati, A., Gall, J., Grabner, H., Ren, X., Konolige, K. (eds.) Consumer Depth Cameras for Computer Vision, pp. 193–208. Springer, Berlin (2013)CrossRefGoogle Scholar
  74. 74.
    Nikisins, O., Nasrollahi, K., Greitans, M., Moeslund, T.B.: Rgb-dt based face recognition. In: 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 1716–1721. IEEE (2014)Google Scholar
  75. 75.
    Oliver, N., Garg, A., Horvitz, E.: Layered representations for learning and inferring office activity from multiple sensory channels. Comput. Vis. Image Underst. 96(2), 163–180 (2004)CrossRefGoogle Scholar
  76. 76.
    Pardo, À., Clapés, A., Escalera, S., Pujol, O.: Actions in context: system for people with dementia. In: Nin, J., Villatoro, D. (eds.) Citizen in Sensor Networks, pp. 3–14. Springer, Berlin (2014)CrossRefGoogle Scholar
  77. 77.
    Piyathilaka, L., Kodagoda, S.: Gaussian mixture based hmm for human daily activity recognition using 3d skeleton features. In: 2013 8th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 567–572. IEEE (2013)Google Scholar
  78. 78.
    Pylvänäinen, T.: Accelerometer based gesture recognition using continuous Hmms. In: Pattern Recognition and Image Analysis, pp. 639–646. Springer (2005)Google Scholar
  79. 79.
    Rashidi, P., Cook, D.J.: Keeping the resident in the loop: adapting the smart home to the user. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 39(5), 949–959 (2009)CrossRefGoogle Scholar
  80. 80.
    Reyes, M., Domínguez, G., Escalera, S.: Featureweighting in dynamic timewarping for gesture recognition in depth data. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1182–1188. IEEE (2011)Google Scholar
  81. 81.
    Ribeiro, P.C., Santos-Victor, J.: Human activity recognition from video: modeling, feature selection and classification architecture. In: Proceedings of International Workshop on Human Activity Recognition and Modelling, pp. 61–78. Citeseer (2005)Google Scholar
  82. 82.
    Riboni, D., Bettini, C.: COSAR: hybrid reasoning for context-Aware activity recognition. Pers. Ubiquitous Comput. 15(3), 271–289 (2011). CrossRefGoogle Scholar
  83. 83.
    Rodriguez, M.D., Ahmed, J., Shah, M.: Action mach a spatio-temporal maximum average correlation height filter for action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8. IEEE (2008)Google Scholar
  84. 84.
    Sadanand, S., Corso, J.J.: Action bank: A high-level representation of activity in video. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1234–1241. IEEE (2012)Google Scholar
  85. 85.
    Saha, S., Pal, M., Konar, A., Janarthanan, R.: Neural network based gesture recognition for elderly health care using kinect sensor. In: Swarm, Evolutionary, and Memetic Computing, pp. 376–386. Springer (2013)Google Scholar
  86. 86.
    Schindler, K., Van Gool, L.: Action snippets: How many frames does human action recognition require? In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8. IEEE (2008)Google Scholar
  87. 87.
    Schüldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local svm approach. In: . Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 3, pp. 32–36. IEEE (2004)Google Scholar
  88. 88.
    Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., Cook, M., Moore, R.: Real-time human pose recognition in parts from single depth images. Commun. ACM 56(1), 116–124 (2013)CrossRefGoogle Scholar
  89. 89.
    Snoek, C.G., Worring, M., Smeulders, A.W.: Early versus late fusion in semantic video analysis. In: Proceedings of the 13th Annual ACM International Conference on Multimedia, pp. 399–402. ACM (2005)Google Scholar
  90. 90.
    Sung, J., Ponce, C., Selman, B., Saxena, A.: Unstructured human activity detection from rgbd images. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 842–849. IEEE (2012)Google Scholar
  91. 91.
    Tang, K., Fei-Fei, L., Koller, D.: Learning latent temporal structure for complex event detection. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1250–1257. IEEE (2012)Google Scholar
  92. 92.
    Tang, S., Wang, X., Lv, X., Han, T.X., Keller, J., He, Z., Skubic, M., Lao, S.: Histogram of oriented normal vectors for object recognition with a depth sensor. In: Computer Vision–ACCV 2012, pp. 525–538. Springer (2012)Google Scholar
  93. 93.
    Ullah, M.M., Parizi, S.N., Laptev, I.: Improving bag-of-features action recognition with non-local cues. In: BMVC, vol. 10, pp. 95–1. Citeseer (2010)Google Scholar
  94. 94.
    Van Hoof, J., Kort, H., Rutten, P., Duijnstee, M.: Ageing-in-place with the use of ambient intelligence technology: perspectives of older users. Int. J. Med. Inform. 80(5), 310–331 (2011)CrossRefGoogle Scholar
  95. 95.
    Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 480–492 (2012)CrossRefGoogle Scholar
  96. 96.
    Vintsyuk, T.K.: Speech discrimination by dynamic programming. Cybern. Syst. Anal. 4(1), 52–57 (1968)MathSciNetCrossRefGoogle Scholar
  97. 97.
    Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajectories. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3169–3176. IEEE (2011)Google Scholar
  98. 98.
    Wang, H., Schmid, C.: Action recognition with improved trajectories. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 3551–3558. IEEE (2013)Google Scholar
  99. 99.
    Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Learning to track for spatio-temporal action localization. (2015). arXiv preprint arXiv:1506.01929
  100. 100.
    World Health Organization, Alzheimer’s Disease International: Dementia: a public health priority. World Health Organization, Geneva (2012)Google Scholar
  101. 101.
    Wu, D., Zhu, F., Shao, L.: One shot learning gesture recognition from rgbd images. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 7–12. IEEE (2012)Google Scholar
  102. 102.
    Wu, J., Osuntogun, A., Choudhury, T., Philipose, M., Rehg, J.M.: A scalable approach to activity recognition based on object use. In: IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007, pp. 1–8. IEEE (2007)Google Scholar
  103. 103.
    Xiao, Y., Zhao, G., Yuan, J., Thalmann, D.: Activity recognition in unconstrained rgb-d video using 3d trajectories. In: SIGGRAPH Asia 2014 Autonomous Virtual Humans and Social Robot for Telepresence, SA ’14, pp. 4:1–4:4. ACM, New York, NY, USA (2014).
  104. 104.
    Xu, Z., Yang, Y., Hauptmann, A.G.: A discriminative cnn video representation for event detection (2014). arXiv preprint arXiv:1411.4006
  105. 105.
    Yang, J.Y., Wang, J.S., Chen, Y.P.: Using acceleration measurements for activity recognition: an effective learning algorithm for constructing neural classifiers. Pattern Recognit. Lett. 29(16), 2213–2220 (2008)CrossRefGoogle Scholar
  106. 106.
    Zhang, B., Jiang, S., Wei, D., Marschollek, M., Zhang, W.: State of the art in gait analysis using wearable sensors for healthcare applications. In: 2012 IEEE/ACIS 11th International Conference on Computer and Information Science (ICIS), pp. 213–218. IEEE (2012)Google Scholar
  107. 107.
    Zhang, C., Tian, Y.: Rgb-d camera-based daily living activity recognition. J. Comput. Vis. Image Process. 2(4), 12 (2012)Google Scholar
  108. 108.
    Zhao, Y., Liu, Z., Yang, L., Cheng, H.: Combing rgb and depth map features for human activity recognition. In: Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific, pp. 1–4. IEEE (2012)Google Scholar
  109. 109.
    Zhou, F., Jiao, J., Chen, S., Zhang, D.: A case-driven ambient intelligence system for elderly in-home assistance applications. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 41(2), 179–189 (2011)CrossRefGoogle Scholar
  110. 110.
    Zhu, C., Sheng, W.: Multi-sensor fusion for human daily activity recognition in robot-assisted living. In: Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction, pp. 303–304. ACM (2009)Google Scholar
  111. 111.
    Zou, Q., Ni, L., Wang, Q., Li, Q., Wang, S.: Robust gait recognition by integrating inertial and rgbd sensors. IEEE Trans. Cybern. PP(99), 1–15 (2018). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Albert Clapés
    • 1
    • 2
  • Àlex Pardo
    • 1
  • Oriol Pujol Vila
    • 1
  • Sergio Escalera
    • 1
    • 2
  1. 1.Matemátiques i Informática, UBBarcelonaSpain
  2. 2.Computer Vision CenterCerdanyola del VallèsSpain

Personalised recommendations