An experimental comparison of superpixels detection methods for contour detection
- 50 Downloads
Abstract
Recently, many superpixels detection methods have been proposed and used in various applications. We are interested in which method is more suitable for the application of contour detection. In this paper, superpixels are evaluated on BSDS500 dataset in two different aspects. On the one hand, contours are directly provided by the boundaries of superpixels and experiments show that better results could be achieved by the superpixels with irregular shapes than those with regular shapes and similar sizes. On the other hand, contours are further detected from those candidate positions which are confirmed by the boundaries of superpixels through the operation of dilation. In this situation, experiments show that competitive results could also be achieved by some superpixels with regular shapes and similar sizes. Besides, we propose a superpixels detection method called watershed-based graph (WG), by which superpixels with irregular shapes could be produced. Firstly, a graph is constructed from an over-segmented map which is achieved through a watershed algorithm. Then, to get the desired superpixels, the graph is segmented by merging neighbor segments in an order of decreasing similarity. Experiments show that higher efficiency could be achieved by WG with a moderate worse contour quality than its original graph-based method.
Keywords
Superpixels Region merging Contour detection Image segmentationNotes
Acknowledgements
This work is supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China (Grant No. 51521064) and by the innovation fund of Shanghai Academy of Spaceflight Technology (Grant No. SAST2015086).
References
- 1.Alex, L., Adrian, S., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Kaleem, S.: Turbopixels: fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2290–2297 (2009)CrossRefGoogle Scholar
- 2.Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)CrossRefGoogle Scholar
- 3.Tighe, J., Lazebnik, S.: Superparsing: scalable nonparametric image parsing with superpixels. Int. J. Comput. Vis. 101(2), 352–365 (2010)MathSciNetGoogle Scholar
- 4.Ren, Z., Shakhnarovich, G.: Image segmentation by cascaded region agglomeration. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2011–2018 (2013)Google Scholar
- 5.Shen, J., Du, Y., Li, X.: Interactive segmentation using constrained laplacian optimization. IEEE Trans. Circuits Syst. Video Technol. 24(7), 1088–1100 (2014)CrossRefGoogle Scholar
- 6.Dong, X., Shen, J., Shao, L., Gool, L.V.: Sub-Markov random walk for image segmentation. IEEE Trans. Image Process. 25(2), 516–527 (2016). https://doi.org/10.1109/TIP.2015.2505184 MathSciNetCrossRefGoogle Scholar
- 7.Wang, W., Shen, J., Li, X., Porikli, F.: Robust video object cosegmentation. IEEE Trans. Image Process. 24(10), 3137–3148 (2015). https://doi.org/10.1109/TIP.2015.2438550 MathSciNetCrossRefGoogle Scholar
- 8.Dong, X., Shen, J., Shao, L.: Hierarchical superpixel-to-pixel dense matching. IEEE Trans. Circuits Syst. Video Technol. 27(12), 2518–2526 (2017). https://doi.org/10.1109/TCSVT.2016.2595321 CrossRefGoogle Scholar
- 9.Wang, W., Shen, J., Shao, L.: Consistent video saliency using local gradient flow optimization and global refinement. IEEE Trans. Image Process. 24(11), 4185–4196 (2015)MathSciNetCrossRefGoogle Scholar
- 10.Wu, C.W., Zhao, H.Q., Cao, S.X., Xiang, K., Wang, X.Y.: Attention shift-based multiple saliency object segmentation. J. Electron. Imaging 25(5), 053,009–053,009 (2016). https://doi.org/10.1117/1.JEI.25.5.053009 CrossRefGoogle Scholar
- 11.Han, J., Cheng, G., Li, Z., Zhang, D.: A unified metric learning-based framework for co-saliency detection. IEEE Trans. Circuits Syst. Video Technol. PP(99), 1 (2017). https://doi.org/10.1109/TCSVT.2017.2706264 CrossRefGoogle Scholar
- 12.Zhang, D., Meng, D., Han, J.: Co-saliency detection via a self-paced multiple-instance learning framework. IEEE Trans. Pattern Anal. Mach. Intell. 39(5), 865–878 (2017). https://doi.org/10.1109/TPAMI.2016.2567393 CrossRefGoogle Scholar
- 13.Yao, X., Han, J., Zhang, D., Nie, F.: Revisiting co-saliency detection: a novel approach based on two-stage multi-view spectral rotation co-clustering. IEEE Trans. Image Process. 26(7), 3196–3209 (2017). https://doi.org/10.1109/TIP.2017.2694222 MathSciNetCrossRefGoogle Scholar
- 14.Zhang, D., Han, J., Jiang, L., Ye, S., Chang, X.: Revealing event saliency in unconstrained video collection. IEEE Trans. Image Process. 26(4), 1746–1758 (2017). https://doi.org/10.1109/TIP.2017.2658957 MathSciNetCrossRefGoogle Scholar
- 15.Li, Z., Chen, J.: Superpixel segmentation using linear spectral clustering. In: Computer Vision and Pattern Recognition (2015)Google Scholar
- 16.Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)CrossRefGoogle Scholar
- 17.Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)CrossRefGoogle Scholar
- 18.Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)CrossRefGoogle Scholar
- 19.Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)CrossRefGoogle Scholar
- 20.Moore, A.P., Prince, S.J.D., Warrell, J., Mohammed, U., Jones, G.: Superpixel lattices, pp. 1–8 (2008)Google Scholar
- 21.Moore, A.P., Prince, S.J.D., Warrell, J.: Lattice cut—constructing superpixels using layer constraints. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2124 (2010)Google Scholar
- 22.Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and supervoxels in an energy optimization framework. In: Computer Vision—ECCV 2010—European Conference on Computer Vision, Heraklion, Crete, Greece, September 5–11, 2010, Proceedings, pp. 211–224 (2010)Google Scholar
- 23.Zhang, Y., Hartley, R., Mashford, J., Burn, S.: Superpixels via pseudo-boolean optimization. In: International Conference on Computer Vision, pp. 1387–1394 (2011)Google Scholar
- 24.Liu, M.Y., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy rate superpixel segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2104 (2011)Google Scholar
- 25.Bergh, M.V.D., Boix, X., Roig, G., Gool, L.V.: Seeds: Superpixels extracted via energy-driven sampling. Int. J. Comput. Vis. 111(3), 298–314 (2012)MathSciNetCrossRefGoogle Scholar
- 26.Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
- 27.Neubert, P., Protzel, P.: Compact watershed and preemptive slic: On improving trade-offs of superpixel segmentation algorithms. In: International Conference on Pattern Recognition, pp. 996–1001 (2014)Google Scholar
- 28.Shen, J., Du, Y., Wang, W., Li, X.: Lazy random walks for superpixel segmentation. IEEE Trans. Image Process. 23(4), 1451–1462 (2014). https://doi.org/10.1109/TIP.2014.2302892 MathSciNetCrossRefMATHGoogle Scholar
- 29.Shen, J., Hao, X., Liang, Z., Liu, Y., Wang, W., Shao, L.: Real-time superpixel segmentation by dbscan clustering algorithm. IEEE Trans. Image Process. 25(12), 5933–5942 (2016). https://doi.org/10.1109/TIP.2016.2616302 MathSciNetCrossRefGoogle Scholar
- 30.Peng, J., Shen, J., Yao, A., Li, X.: Superpixel optimization using higher order energy. IEEE Trans. Circuits Syst. Video Technol. 26(5), 917–927 (2016). https://doi.org/10.1109/TCSVT.2015.2430631 CrossRefGoogle Scholar
- 31.Liang, Y., Shen, J., Dong, X., Sun, H., Li, X.: Video supervoxels using partially absorbing random walks. IEEE Trans. Circuits Syst. Video Technol. 26(5), 928–938 (2016). https://doi.org/10.1109/TCSVT.2015.2406232 CrossRefGoogle Scholar
- 32.Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
- 33.Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)CrossRefGoogle Scholar
- 34.Deng, Y., Manjunath, B.S., Shin, H.: Color image segmentation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2. IEEE (1999)Google Scholar
- 35.Roerdink, J.B.T.M., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundam. Inf. 41(1–2), 187–228 (2000)MathSciNetMATHGoogle Scholar
- 36.Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004)CrossRefGoogle Scholar
- 37.Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001. Proceedings, vol. 2, pp. 416–423 (2001)Google Scholar
- 38.Wang, X.Y., Wu, C.W., Xiang, K., Chen, W.: Efficient local and global contour detection based on superpixels. J. Vis. Commun. Image Represent. 48, 77–87 (2017). https://doi.org/10.1016/j.jvcir.2017.06.005 CrossRefGoogle Scholar