Advertisement

Machine Vision and Applications

, Volume 28, Issue 8, pp 875–902 | Cite as

Comparison of SIFT, Bi-SIFT, and Tri-SIFT and their frequency spectrum analysis

  • Kazim Şekeroğlu
  • Ömer Muhammet SoysalEmail author
Original Paper

Abstract

This paper aims to explore frequency behavior of isotropic (regular SIFT) and anisotropic (Bi-SIFT and Tri-SIFT) versions of the scale-space keypoint detection algorithm SIFT. We introduced a new smoothing function Trilateral filter that can be used in formation of a scale-space as an alternative to the Gaussian scale-space. The number of matching pixels, warping error, and scatteredness are employed in comparison. We made the comparison out of face dataset and object dataset for scale, orientation, and view-angle transformations as well as lighting and compression variations. The comparison results show that anisotropic smoothing detects more keypoints than isotropic one. The Tri-SIFT is more robust to variation in viewpoint angle.

Keywords

SIFT Image enhancement Image representation Image filter Anisotropic filter 

Supplementary material

138_2017_868_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (docx 1070 KB)

References

  1. 1.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  2. 2.
    Lindeberg, T.: Scale-space theory: a basic tool for analysing structures at different scales. J. Appl. Stat. 21(2), 225–270 (1994)CrossRefGoogle Scholar
  3. 3.
    Koenderink, J.J.: The structure of images. Biol. Cybern. 50(5), 363–370 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: International Conference on Computer Vision, Bombay (1998)Google Scholar
  5. 5.
    Mikolajczyk, K.: Detection of local features invariant to affine transformations. Ph.D. thesis, Institut National Polytechnique de Grenoble, France (2002)Google Scholar
  6. 6.
    Wu, J., Cui, Z., Sheng, V.S., Zhao, P., Su, D., Gong, S.: A comparative study of SIFT and its variants. Meas. Sci. Rev. 13(3), 122–131 (2013)CrossRefGoogle Scholar
  7. 7.
    Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2004)Google Scholar
  8. 8.
    Mortensen, E.N., Deng, H., Shapiro, L.: A SIFT descriptor with global context. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) (2005)Google Scholar
  9. 9.
    Abdel-Hakim, A.E., Farag, A.A.: CSIFT: A SIFT descriptor with color invariant characteristics. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) (2006)Google Scholar
  10. 10.
    Morel, J.M., Yu, G.: ASIFT: a new framework for fully affine invariant image comparison. SIAM J. Imaging Sci. 2(2), 438–469 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Skoch, W., Gauch, J.: The effects of anisotropic Gaussian diffusion in scale invariant feature detection. In: IEEE International Conference on Signal and Image Processing Applications (ICSIPA2011), Kuala Lumpur (2011)Google Scholar
  12. 12.
    Wang, F.: Adapted anisotropic Gaussian SIFT matching strategy for SAR registration. Geosci. Remote Sens. Lett. 12(1), 160–164 (2015)CrossRefGoogle Scholar
  13. 13.
    Alcantarilla, P.F., Davison, A.B., Andrew, J.: KAZE features. In: In European Conference on Computer Vision (ECCV), Fiorenze, Italy (2012)Google Scholar
  14. 14.
    Wang, S., Fu, H.Y.K.: BFSIFT: a novel method to find feature matches for SAR image registration. Geosci. Remote Sens. Lett. 9(4), 649–653 (2012)CrossRefGoogle Scholar
  15. 15.
    Huang, M., Mu, Z., Zeng, H., Huang, H.: A novel approach for interest point detection via Laplacian-of-bilateral filter. J. Sens. 2015, 9 (2015)Google Scholar
  16. 16.
  17. 17.
    Chen, J.C., Lien, J.J.J.: A view-based statistical system for multi-view face detection and pose estimation. Image Vis. Comput. 27(9), 1252–1271 (2009)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Mikolajczyk, T.T.K., Schmid, A.Z.C., Matas, F.S.J., Kadir, T., Gool, L.V.: A comparison of affine region detectors. Int. J. Comput. Vis. 65(1), 43–72 (2005)CrossRefGoogle Scholar
  20. 20.
  21. 21.
  22. 22.
  23. 23.
  24. 24.
  25. 25.

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Southeastern Louisiana UniversityHammondUSA

Personalised recommendations