Machine Vision and Applications

, Volume 27, Issue 8, pp 1161–1174 | Cite as

Topology-based image segmentation using LBP pyramids

  • Martin Cerman
  • Ines Janusch
  • Rocio Gonzalez-Diaz
  • Walter G. Kropatsch
Special Issue Paper


In this paper, we present a new image segmentation algorithm which is based on local binary patterns (LBPs) and the combinatorial pyramid and which preserves structural correctness and image topology. For this purpose, we define a codification of LBPs using graph pyramids. Since the LBP code characterizes the topological category (local max, min, slope, saddle) of the gray level landscape around the center region, we use it to obtain a “minimal” image representation in terms of the topological characterization of a given 2D grayscale image. Based on this idea, we further describe our hierarchical texture aware image segmentation algorithm and compare its segmentation output and the “minimal” image representation.


Local binary patterns Irregular graph pyramid Primal and dual graph Topological characterization Image segmentation 



We thank both referees for their valuable comments and suggestions.


  1. 1.
    Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE TPAMI 33(5), 898–916 (2011)CrossRefGoogle Scholar
  2. 2.
    Cerman, M.: Structurally correct image segmentation using local binary patterns and the combinatorial pyramid. Technical Report 133(, Vienna University of Technology, Pattern Recognition and Image Processing (PRIP) Group (2015)Google Scholar
  3. 3.
    Cerman, M., Gonzalez-Diaz, R., Kroptasch, W.: LBP and irregular graph pyramids. In: 16th International Conference on Computer Analysis of Images and Patterns (CAIP2015) (2015)Google Scholar
  4. 4.
    Chen, J., Shan, S., He, C., Zhao, G., Pietikäinen, M., Chen, X., Gao, W.: WLD: a robust local image descriptor. IEEE TPAMI 32(9), 1705–1720 (2010)CrossRefGoogle Scholar
  5. 5.
    Fehr, J., Burkhardt, H.: 3D rotation invariant local binary patterns. In: Proceedings of 19th International Conference on Pattern Recognition (ICPR08), pp. 1–4 (2008)Google Scholar
  6. 6.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Image segmentation using local variation. In: Proceedings of Computer Vision and Pattern Recognition, pp. 98–104 (1998)Google Scholar
  7. 7.
    Gonzalez-Diaz, R., Ion, A., Iglesias-Ham, M., Kropatsch, W.G.: Invariant representative cocycles of cohomology generators using irregular graph pyramids. Comput. Vis. Image Underst. 115(7), 1011–1022 (2011)CrossRefMATHGoogle Scholar
  8. 8.
    Guo, G., Jones, M.J.: Iris extraction based on intensity gradient and texture difference. In: Proceedings of the 2008 IEEE Workshop on Applications of Computer Vision (WACV ’08), pp. 1–6 (2008)Google Scholar
  9. 9.
    Hadid, A., Pietikinen, M., Ahonen, T.: A discriminative feature space for detecting and recognizing faces. In: 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04), pp. 797–804 (2004)Google Scholar
  10. 10.
    Haxhimusa, Y.: The Structurally Optimal Dual Graph Pyramid and its Application in Image Partitioning, 1st edn. IOS Press, Amsterdam (2007)MATHGoogle Scholar
  11. 11.
    Heikkilä, M., Pietikäinen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE TPAMI 28(4), 657–662 (2006)CrossRefGoogle Scholar
  12. 12.
    Kropatsch, W.G.: Building irregular pyramids by dual-graph contraction. IEEE Proc. Vis. Image Signal Process. 142(6), 366–374 (1995)CrossRefGoogle Scholar
  13. 13.
    Kropatsch, W.G., Haxhimusa, Y., Pizlo, Z., Langs, G.: Vision pyramids that do not grow too high. Pattern Recognit. Lett. 26(3), 319–337 (2005)CrossRefGoogle Scholar
  14. 14.
    Latecki, L., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vis. Image Underst. 61, 70–83 (1995)CrossRefGoogle Scholar
  15. 15.
    LBP’2014 Workshop on Computer Vision With Local Binary Pattern Variants
  16. 16.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: 8th IEEE International Conference on Computer Vision (ICCV), vol. 2, pp. 416–423 (2001)Google Scholar
  17. 17.
    Moyles, D.M., Thompson, G.L.: An algorithm for finding a minimum equivalent graph of a digraph. J. ACM 16(3), 455–460 (1969)CrossRefMATHGoogle Scholar
  18. 18.
    Nguyen, D.T., Ogunbona, P.O., Li, W.: A novel shape-based non-redundant local binary pattern descriptor for object detection. Pattern Recognit. 46(5), 1485–1500 (2013)CrossRefGoogle Scholar
  19. 19.
    Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 29(1), 51–59 (1996)CrossRefGoogle Scholar
  20. 20.
    Ojala, T., Pietikinen, M.: Unsupervised texture segmentation using feature distributions. Pattern Recognit. 32, 477–486 (1999)CrossRefGoogle Scholar
  21. 21.
    Ojala, T., Pietikainen, M., Maenaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE TPAMI 24(7), 971–987 (2002)CrossRefGoogle Scholar
  22. 22.
    Paris, S., Durand, F.: A topological approach to hierarchical segmentation using mean shift. CVPR 2007, IEEE Computer Society 2007, ISBN 1-4244-1179-3Google Scholar
  23. 23.
    Paulhac, L., Makris, P., Ramel, J.-Y.: Comparison between 2D and 3D local binary pattern methods for characterization of three-dimensional textures. In: Proceedings of the International Conference on Image Analysis and Recognition, LNCS, vol. 5112, pp. 670–679 (2008)Google Scholar
  24. 24.
    Peng, B., Zhang, L., Zhang, D.: A survey of graph theoretical approaches to image segmentation. Pattern Recognit. 46(3), 1020–1038 (2013)CrossRefGoogle Scholar
  25. 25.
    Pietikinen, M., Hadid, A., Zhao, G., Ahonen, T.: Computer Vision Using Local Binary Patterns, vol. 40. Springer, NewYork (2011)CrossRefGoogle Scholar
  26. 26.
    Raut, S., Raghuvanshi, M., Dharaskar, R., Raut, A.: Image segmentation—a state-of-art survey for prediction. In: Proceedings of the 2009 International Conference on Advanced Computer Control (ICACC), pp. 420–424 (2009)Google Scholar
  27. 27.
    Shan, C.: Learning local binary patterns for gender classification on real-world face images. Pattern Recognit. Lett. 33(4), 431–437 (2012)CrossRefGoogle Scholar
  28. 28.
    Sharma, G., Wu, W., Dalal, E.N.: The CIEDE2000 color difference formula: implementation notes, supplementary test data, and mathematical observations. Color Res. Appl. 30(1), 21–30 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Martin Cerman
    • 1
  • Ines Janusch
    • 1
  • Rocio Gonzalez-Diaz
    • 2
  • Walter G. Kropatsch
    • 1
  1. 1.PRIP groupTU WienViennaAustria
  2. 2.Applied Math Department, School of Computer EngineeringUniversity of SevilleSevilleSpain

Personalised recommendations