Machine Vision and Applications

, Volume 26, Issue 7–8, pp 1079–1094 | Cite as

Entropy volumes for viewpoint-independent gait recognition

  • D. López-FernándezEmail author
  • F. J. Madrid-Cuevas
  • A. Carmona-Poyato
  • R. Muñoz-Salinas
  • R. Medina-Carnicer
Original Paper


Gait as biometrics has been widely used for human identification. However, direction changes cause difficulties for most of the gait-recognition systems, due to appearance changes. This study presents an efficient multi-view gait-recognition method that allows curved trajectories on completely unconstrained paths for indoor environments. Our method is based on volumetric reconstructions of humans, aligned along their way. A new gait descriptor, termed as gait entropy volume (GEnV), is also proposed. GEnV focuses on capturing 3D dynamical information of walking humans through the concept of entropy. Our approach does not require the sequence to be split into gait cycles. A GEnV-based signature is computed on the basis of the previous 3D gait volumes. Each signature is classified by a support vector machine, and a majority voting policy is used to smooth and reinforce the classifications results. The proposed approach is experimentally validated on the “AVA Multi-View Gait Dataset (AVAMVG)” and on the “Kyushu University 4D Gait Database (KY4D)”. The results show that this new approach achieves promising results in the problem of gait recognition on unconstrained paths.


Gait entropy volume Gait recognition View-independent 3D reconstruction Curved trajectories 



This work has been developed with the support of the Research Projects called TIN2012-32952 and BROCA both financed by Science and Technology Ministry of Spain and FEDER. Thanks to Kurazume and Iwashita Laboratory, Graduate School of Information Science and Electrical Engineering, Kyushu University, for providing the KY4D gait database.


  1. 1.
    Bashir, K., Xiang, T., Gong, S.: Gait recognition using gait entropy image. In: 3rd International Conference on Crime Detection and Prevention (ICDP’09), pp. 1–6 (2009)Google Scholar
  2. 2.
    Bashir, K., Xiang, T., Gong, S.: Gait recognition without subject cooperation. Pattern Recognit. Lett. 31(13), 2052–2060 (2010)CrossRefGoogle Scholar
  3. 3.
    Bodor, R., Drenner, A., Fehr, D., Masoud, O., Papanikolopoulos, N.: View-independent human motion classification using image-based reconstruction. Image Vis. Comput. 27(8), 1194–1206 (2009)CrossRefGoogle Scholar
  4. 4.
    Bolle, R., Pankanti, S.: Biometrics, Personal Identification in Networked Society. Kluwer Academic Publishers, Norwell (1998)Google Scholar
  5. 5.
    Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2, 121–167 (1998)CrossRefGoogle Scholar
  6. 6.
    Castro, F.M., Marín-Jiménez, M.J., Medina-Carnicer, R.: Pyramidal fisher motion for multiview gait recognition. In: Proceedings of the International Conference on Pattern Recognition (2014)Google Scholar
  7. 7.
    Chattopadhyay, P., Roy, A., Sural, S., Mukhopadhyay, J.: Pose depth volume extraction from RGB-D streams for frontal gait recognition. J. Vis. Commun. Image Represent. 25(1), 53–63 (2014)CrossRefGoogle Scholar
  8. 8.
    Cheng, M.H., Ho, M.F., Huang, C.L.: Gait analysis for human identification through manifold learning and hmm. Pattern Recognit. 41(8), 2541–2553 (2008)zbMATHCrossRefGoogle Scholar
  9. 9.
    Choudhury, S.D., Tjahjadi, T.: Silhouette-based gait recognition using procrustes shape analysis and elliptic Fourier descriptors. Pattern Recognit. 45(9), 3414–3426 (2012)CrossRefGoogle Scholar
  10. 10.
    Cutting, J.E., Kozlowski, L.T.: Recognizing friends by their walk: gait perception without familiarity cues. Bull. Psychon. Soc. 9, 353–356 (1977)CrossRefGoogle Scholar
  11. 11.
    Díaz-Más, L., Muñoz Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Shape from silhouette using Dempster–Shafer theory. Pattern Recognit. 43(6), 2119–2131 (2010)Google Scholar
  12. 12.
    Drinkwater, D., Ross, W.: Anthropometric fractionation of body mass. In: Kinanthropometry, vol. 2, pp. 178–189. University Park Press, Baltimore (1980)Google Scholar
  13. 13.
    Goffredo, M., Bouchrika, I., Carter, J., Nixon, M.: Self-calibrating view-invariant gait biometrics. IEEE Trans. Syst. Man Cybern. Part B Cybern. 40(4), 997–1008 (2010)CrossRefGoogle Scholar
  14. 14.
    Gross, R., Shi, J.: The CMU motion of body (MoBo) database. Tech. Rep. CMU-RI-TR-01-18, Robotics Institute, Pittsburgh (2001)Google Scholar
  15. 15.
    Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2006)CrossRefGoogle Scholar
  16. 16.
    Han, J., Bhanu, B., Roy-Chowdhury, A.: A study on view-insensitive gait recognition. In: IEEE International Conference on Image Processing (ICIP’05), vol. 3, pp. III–297–300 (2005)Google Scholar
  17. 17.
    Hofmann, M., Bachmann, S., Rigoll, G.: 2.5d Gait biometrics using the depth gradient histogram energy image. In: IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 399–403 (2012)Google Scholar
  18. 18.
    Hong, S., Lee, H., Kim, E.: Automatic gait recognition using width vector mean. In: 4th IEEE Conference on Industrial Electronics and Applications, pp. 647–650 (2009)Google Scholar
  19. 19.
    Horprasert, T., Harwood, D., Davis, L.S.: A statistical approach for real-time robust background subtraction and shadow detection. In: Proc. IEEE ICCV, pp. 1–19 (1999)Google Scholar
  20. 20.
    Huang, P., Harris, C., Nixon, M.: Recognising humans by gait via parametric canonical space. Artif. Intell. Eng. 13(4), 359–366 (1999)CrossRefGoogle Scholar
  21. 21.
    Iwashita, Y., Ogawara, K., Kurazume, R.: Identification of people walking along curved trajectories. Pattern Recognit. Lett. 48, 60–69 (2014)CrossRefGoogle Scholar
  22. 22.
    Jean, F., Albu, A.B., Bergevin, R.: Towards view-invariant gait modeling: computing view-normalized body part trajectories. Pattern Recognit. 42(11), 2936–2949 (2009)zbMATHCrossRefGoogle Scholar
  23. 23.
    Jeong, S., Kim, T.H., Cho, J.: Gait recognition using description of shape synthesized by planar homography. J. Supercomput. 65(1), 122–135 (2013)Google Scholar
  24. 24.
    Kale, A., Chowdhury, A., Chellappa, R.: Towards a view invariant gait recognition algorithm. In: Proceedings of IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 143–150 (2003)Google Scholar
  25. 25.
    Kale, A., Cuntoor, N., Yegnanarayana, B., Rajagopalan, A., Chellappa, R.: Gait analysis for human identification. In: Audio- and Video-Based Biometric Person Authentication, vol. 2688, pp. 706–714. Springer, Berlin (2003)Google Scholar
  26. 26.
    Kusakunniran, W., Wu, Q., Li, H., Zhang, J.: Multiple views gait recognition using view transformation model based on optimized gait energy image. In: IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1058–1064 (2009)Google Scholar
  27. 27.
    Kusakunniran, W., Wu, Q., Zhang, J., Li, H.: Gait recognition under various viewing angles based on correlated motion regression. IEEE Trans. Circuits Syst. Video Technol. 22(6), 966–980 (2012)CrossRefGoogle Scholar
  28. 28.
    Laurentini, A.: The visual hull concept for silhouette-based image understanding. IEEE Trans. Pattern Anal. Mach. Intell. 16(2), 150–162 (1994)CrossRefGoogle Scholar
  29. 29.
    Lee, C.P., Tan, A.W., Tan, S.C.: Gait recognition via optimally interpolated deformable contours. Pattern Recognit. Lett. 34(6), 663–669 (2013)CrossRefGoogle Scholar
  30. 30.
    Liu, N., Tan, Y.P.: View invariant gait recognition. In: IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP’10), pp. 1410–1413 (2010)Google Scholar
  31. 31.
    López-Fernández, D., Madrid-Cuevas, F.J., Carmona-Poyato, A., Marín-Jiménez, M.J., Muñoz Salinas, R.: The AVA multi-view dataset for gait recognition (AVAMVG). In: 2nd Workshop Activity Monitoring by Multiple Distributed Sensing (AMMDS). ICPR’14, Lecture Notes in Computer Science, vol. 8703. Springer, Berlin (2014)Google Scholar
  32. 32.
    Makihara, Y., Sagawa, R., Mukaigawa, Y., Echigo, T., Yagi, Y.: Gait recognition using a view transformation model in the frequency domain. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision—ECCV 2006. Lecture Notes in Computer Science, vol. 3953, pp. 151–163. Springer, Berlin (2006)Google Scholar
  33. 33.
    Mowbray, S.D., Nixon, M.S.: Automatic gait recognition via fourier descriptors of deformable objects. In: Audio Visual Biometric Person Authentication, pp. 566–573. Springer, Berlin (2003)Google Scholar
  34. 34.
    Pal, N., Pal, S.: Entropy: a new definition and its applications. IEEE Trans. Syst. Man Cybern. 21(5), 1260–1270 (1991)CrossRefGoogle Scholar
  35. 35.
    Rougier, C., Auvinet, E., Meunier, J., Mignotte, M., de Guise, J.: Depth energy image for gait symmetry quantification. In: IEEE International Conference on Engineering in Medicine and Biology Society, pp. 5136–5139 (2011)Google Scholar
  36. 36.
    Shakhnarovich, G., Lee, L., Darrell, T.: Integrated face and gait recognition from multiple views. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’01), vol. 1, pp. I-439–I-446 (2001)Google Scholar
  37. 37.
    Sivapalan, S., Chen, D., Denman, S., Sridharan, S., Fookes, C.: Gait energy volumes and frontal gait recognition using depth images. In: Jain, A.K., Ross, A., Prabhakar, S., Kim, J. (eds.) International Joint Conference on Biometrics (IJCB), pp. 1–6. IEEE (2011)Google Scholar
  38. 38.
    Sivapalan, S., Chen, D., Denman, S., Sridharan, S., Fookes, C.: The backfilled GEI—a cross-capture modality gait feature for frontal and side-view gait recognition. In: International Conference on Digital Image Computing Techniques and Applications (DICTA’12), pp. 1–8 (2012)Google Scholar
  39. 39.
    Wang, L., Geng, X.: Behavioral Biometrics For Human Identification: Intelligent Applications, 1 edn. Medical Information Science Reference (2009)Google Scholar
  40. 40.
    Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1505–1518 (2003)CrossRefGoogle Scholar
  41. 41.
    Yu, S., Tan, D., Tan, T.: Modelling the effect of view angle variation on appearance-based gait recognition. In: Narayanan, P., Nayar, S., Shum, H.Y. (eds.) Computer Vision—ACCV 2006. Lecture Notes in Computer Science, vol. 3851, pp. 807–816. Springer, Berlin (2006)Google Scholar
  42. 42.
    Zheng, S., Zhang, J., Huang, K., He, R., Tan, T.: Robust view transformation model for gait recognition. In: 18th IEEE International Conference on Image Processing (ICIP’11), pp. 2073–2076 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • D. López-Fernández
    • 1
    Email author
  • F. J. Madrid-Cuevas
    • 1
  • A. Carmona-Poyato
    • 1
  • R. Muñoz-Salinas
    • 1
  • R. Medina-Carnicer
    • 1
  1. 1.Department of Computing and Numerical Analysis, Maimónides Institute for Biomedical Research (IMIBIC)University of CórdobaCórdobaSpain

Personalised recommendations