Machine Vision and Applications

, Volume 26, Issue 6, pp 837–847 | Cite as

Robust face recognition using sparse representation in LDA space

  • Alessandro Adamo
  • Giuliano Grossi
  • Raffaella Lanzarotti
  • Jianyi Lin
Short Paper

Abstract

In this article, we address the problem of face recognition under uncontrolled conditions. The proposed solution is a numerical robust algorithm dealing with face images automatically registered and projected via the linear discriminant analysis (LDA) into a holistic low-dimensional feature space. At the heart of this discriminative system, there are suitable nonconvex parametric mappings based on which a fixed-point technique finds the sparse representation of test images allowing their classification. We theoretically argue that the success achieved in sparsity promoting is due to the sequence of values imposed on a characteristic parameter of the used mapping family. Experiments carried out on several databases (ORL, YaleB, BANCA, FRGC v2.0) show the robustness and the ability of the system for classification purpose. In particular, within the area of sparsity promotion, our recognition system shows very good performance with respect to those achieved by the state-of-the-art \(\ell _1\) norm-based sparse representation classifier (SRC), the recently proposed \(\ell _2\) norm-based collaborative representation classifier (CRC), the LASSO-based sparse decomposition technique, and the weighted sparse representation method (WSRC), which integrates sparsity and data locality structure.

Keywords

Sparsity recovery Face recognition Fixed-point iteration schema Nonlinear nonconvex mappings SRC, CRC, LASSO, WSRC algorithms 

References

  1. 1.
    Adamo A, Grossi G (2011) A fixed-point iterative schema for error minimization in \(k\)-sparse decomposition. In: Proceedings of the IEEE International Symposium on Signal Processing and Information Technology (ISSPIT’11), pp. 167–172Google Scholar
  2. 2.
    Adamo A, Grossi G, Lanzarotti R (2012) Sparse representation based classification for face recognition by k-limaps algorithm. In: Image and Signal Processing 5th International Conference, ICISP 2012, Springer, Lecture Notes in Computer Science, vol. 7340, pp. 245–252Google Scholar
  3. 3.
    Ayarpadi, K., Kannan, E., Nair, R.R., Anitha, T., Srinivasan, R., Scholar, P.: Face recognition under expressions and lighting variations using masking and synthesizing. Int. J. Eng. Res. Appl. (IJERA). 2(1), 758–763 (2012)Google Scholar
  4. 4.
    Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. Pattern. Anal. Mach. Intell. IEEE. Trans. 19(7):711–720Google Scholar
  5. 5.
    Campadelli, P., Lanzarotti, R., Lipori, G.: Precise eye and mouth localization. Int. J. Pattern. Recognit. Artif. Intell. 23(3), 359–377 (2009)CrossRefGoogle Scholar
  6. 6.
    Campadelli, P., Lanzarotti, R., Lipori, G.: Automatic facial feature extraction for face recognition. In: Delac, K., Grgic, M. (eds.) Face recognition, pp. 31–58. I-Tech Education and Publishing, Vienna (2007)Google Scholar
  7. 7.
    Candes, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure. Appl. Math. 59(8), 1207–1223 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chan C, Kittler J (2010) Sparse representation of ( multiscale ) histograms for face recognition robust to registration and illumination problems. In: Proceedings of the International Conference on Image Processing, pp. 2441–4Google Scholar
  9. 9.
    Dong, W., Zhang, L., Shi, G., Wu, X.: Image deblurring and supper-resolution by adaptive sparse domain selection and adaptive regularization. IEEE. Trans. Image. Process. 20(7), 1838–1857 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gao, S., Tsang, I., Chia, L.: Sparse representation with kernels. IEEE. Trans. Image Process. 22(2), 423–434 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    He, R., Zheng, W., Hu, B.: Maximum correntropy criterion for robust face recognition. IEEE. Trans. Pattern. Anal. Mach. Intell. 33(8), 1561–1576 (2011)CrossRefGoogle Scholar
  12. 12.
    He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face recognition using Laplacianfaces. IEEE. Trans. Pattern. Anal. Mach. Intell. 27(3), 328–340 (2005)CrossRefGoogle Scholar
  13. 13.
    Hui, K., Li, C., Zhang, L.: Sparse neighbor representation for classification. Pattern Recognit. Lett. 33(5), 661–669 (2012)CrossRefGoogle Scholar
  14. 14.
    Huo C, Zhang R, Yin D, Wu Q, Xu D (2012) Hyperspectral data compression using sparse representation. In: Hyperspectral Image and Signal Processing: evolution in Remote Sensing (WHISPERS)Google Scholar
  15. 15.
    Jesorsky, O., Kirchberg, K., Frischholz, R.: Robust face detection using the Hausdorff distance. Lecture Notes Comput. Sci. 2091, 212–227 (2001)Google Scholar
  16. 16.
    Jiang Z, Zhang G, Davis L (2012) Submodular dictionary learning for sparse coding. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3418–3425Google Scholar
  17. 17.
    Kang C, Liao S, Xiang S, Pan C (2011) Kernel sparse representation with local patterns for face recognition. Proceedings of IEEE Conference on Image Processing, pp. 3009–3012Google Scholar
  18. 18.
    Koç, N., Barkana, A.: A new solution to one sample problem in face recognition using FLDA. Appl. Math. Comput. 217(24), 10368–10376 (2011)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kyperountas M, Tefas A, Pitas I (2008) Face recognition via adaptive discriminant clustering. In: Interntional Conference on Image Processing, IEEE, pp. 2744–47Google Scholar
  20. 20.
    Li C, Guo J, Zhang H (2010) Local sparse representation based classification. In: ICPR, pp. 649–652Google Scholar
  21. 21.
    Liu H, Sun F (2010) Visual tracking using sparsity induced similarity. In: ICPR, IEEE, pp. 1702–1705Google Scholar
  22. 22.
    Lu, C.Y., Min, H., Gui, J., Zhu, L., Lei, Y.K.: Face recognition via weighted sparse representation. J. Vis. Commun. Image Represent. 24(2), 111–116 (2013)CrossRefGoogle Scholar
  23. 23.
    Nabatchian, A., Abdel-Raheem, E., Ahmadi, M.: Illumination invariant feature extraction and mutual-information-based local matching for face recognition under illumination variation and occlusion. Pattern Recognit. 44(10–11), 2576–2587 (2011)CrossRefGoogle Scholar
  24. 24.
    Nagesh P, Li B (2009) A compressive sensing approach for expression-invariant face recognition. Proceedings International Conference on Computer Vision and Pattern Recognition, pp. 1518–1525Google Scholar
  25. 25.
    Ortiz, E., Becker, B.: Face recognition for web-scale datasets. Comput. Vision Image Underst. 118, 153–170 (2014)CrossRefGoogle Scholar
  26. 26.
    Patel, V., Wu, T., Biswas, S., Phillips, P., Chellappa, R.: Dictionary-based face recognition under variable lighting and pose. IEEE Trans. Inform. Forensics Secur. 7(3), 954–965 (2012)CrossRefGoogle Scholar
  27. 27.
    Pothos, V., Theoharatos, C., Economou, G.: A local spectral distribution approach to face recognition. Comput. Vision Image Underst. 116(6), 663–675 (2012)CrossRefGoogle Scholar
  28. 28.
    Qiao, L., Chen, S., Tan, X.: Sparsity preserving discriminant analysis for single training image face recognition. Pattern Recognit. Lett. 31(5), 422–429 (2010)CrossRefGoogle Scholar
  29. 29.
    Rabia, J., Hamid, R.: A survey of face recognition techniques. J. Inform. Process. Syst. 5, 41–68 (2009)CrossRefGoogle Scholar
  30. 30.
    Schwartz, W., Guo, H., Choi, J., Davis, L.: Face identification using large feature sets. IEEE. Trans. Image Process. 21(4), 2245–2255 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Shashua, A., Riklin-Raviv, T.: The quotient image: class-based re- rendering and recognition with varying illuminations. IEEE. Trans. Pattern. Anal. Mach. Intell. 23, 129–139 (2001)CrossRefGoogle Scholar
  32. 32.
    Shi Q, Shen C, Li H (2010) Rapid face recognition using hashing. In: CVPR, pp. 2753–60Google Scholar
  33. 33.
    Shit Q, Erikssont A, van den Hengelt A, Shen C (2011) Is face recognition really a compressive sensing problem? Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 553–560Google Scholar
  34. 34.
    Tan X, Chen S, Zhou ZH, Zhang F (2006) Face recognition from a single image per person: a survey. Pattern Recognit. pp. 1725–1745Google Scholar
  35. 35.
    Tibshirani R (1996) Regression shrinkage and selection via the lasso. J. Royal Stat. Soc. Series. B. 58Google Scholar
  36. 36.
    Tolba, A., El-Baz, A., El-Harby, A.: Face recognition: a literature review. Int. J. Signal. Process. 2, 88–103 (2006)Google Scholar
  37. 37.
    Turker, M., Pentland, A.: Face recognition using eigenfaces. J. Cognitive Neurosci. 3(1), (1991)Google Scholar
  38. 38.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. Proceedings IEEE Conference Computer Vision and Pattern Recognition 1, 511–518 (2001)Google Scholar
  39. 39.
    Wagner, A., Wright, J.: Toward a practical face recognition system: robust alignment and illumination by sparse representation. IEEE. Trans. Pattern. Anal. Mach. Intell. 34(2), 372–386 (2012)CrossRefMATHGoogle Scholar
  40. 40.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE. Trans. Pattern. Anal. Mach. Intell. 31(2), 210–227 (2008)CrossRefGoogle Scholar
  41. 41.
    Xu, J., Yang, G., Yin, Y., Man, H., He, H.: Sparse-representation-based classification with structure-preserving dimension reduction. Cognitive Comput. 6(3), 608–621 (2014)CrossRefGoogle Scholar
  42. 42.
    Xu, Y., Zhang, D., Yang, J., Yang, J.: A two-phase test sample sparse representation method for use with face recognition. IEEE. Trans. Circuits Syst. Video Technol. 21(9), 1255–1262 (2011)CrossRefGoogle Scholar
  43. 43.
    Yan, S., Wang, H., Liu, J., Tang, X., Huang, T.: Misalignment-robust face recognition. IEEE. Trans. Image Process. 19(4), 1087–1096 (2010)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Yang J, Yu K, Huang T (2010) Efficient highly over-complete sparse coding using a mixture model. In: Proceedings of ECCVGoogle Scholar
  45. 45.
    Yang, J., Chu, D., Zhang, L., Xu, Y., Yang, J.: Sparse representation classifier steered discriminative projection with applications to face recognition. IEEE. Trans. Neural Netw. Learn. Syst. 24(7), 1023–1035 (2013)Google Scholar
  46. 46.
    Yang M, Zhang L (2010) Gabor feature based sparse representation for face recognition with gabor occlusion dictionary. In: Proceedings of ECCV, p. 448–461Google Scholar
  47. 47.
    Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: Which helps face recognition? Proceedings IEEE International Conference on Computer Vision, pp. 471–478Google Scholar
  48. 48.
    Zhang, S., Yao, H., Zhou, H., Sun, X., Liu, S.: Robust visual tracking based on online learning sparse representation. Neurocomputing 100, 31–40 (2013)CrossRefGoogle Scholar
  49. 49.
    Zhao, W., Chellappa, R., Phillips, P., Rosenfeld, A.: Face recognition: a literature survey. ACM. Comput. Surveys 35(4), 399–458 (2003)CrossRefGoogle Scholar
  50. 50.
    Zini, L., Noceti, N., Fusco, G., Odone, F.: Structured multi-class feature selection with an application to face recognition. Pattern Recognit. Lett. 55, 35–41 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alessandro Adamo
    • 1
  • Giuliano Grossi
    • 2
  • Raffaella Lanzarotti
    • 2
  • Jianyi Lin
    • 2
  1. 1.Department of Mathematics “Federigo Enriques”University of Milan MilanItaly
  2. 2.Department of Computer ScienceUniversity of MilanMilanItaly

Personalised recommendations