Machine Vision and Applications

, Volume 25, Issue 7, pp 1877–1891 | Cite as

3D Hough transform for sphere recognition on point clouds

A systematic study and a new method proposal
  • Marco Camurri
  • Roberto Vezzani
  • Rita Cucchiara
Original Paper


Three-dimensional object recognition on range data and 3D point clouds is becoming more important nowadays. Since many real objects have a shape that could be approximated by simple primitives, robust pattern recognition can be used to search for primitive models. For example, the Hough transform is a well-known technique which is largely adopted in 2D image space. In this paper, we systematically analyze different probabilistic/randomized Hough transform algorithms for spherical object detection in dense point clouds. In particular, we study and compare four variants which are characterized by the number of points drawn together for surface computation into the parametric space and we formally discuss their models. We also propose a new method that combines the advantages of both single-point and multi-point approaches for a faster and more accurate detection. The methods are tested on synthetic and real datasets.


3D Hough transform Sphere detection Randomized HT Probabilistic HT 


  1. 1.
    Schnabel, R., Wessel, R., Wahl, R., Klein, R.: Shape recognition in 3d point-clouds, in: Skala, V. (ed.) The 16-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision’2008. UNION Agency-Science Press (2008)Google Scholar
  2. 2.
    van der Glas, M., Vos, F.M., Botha, C.P., Vossepoel, A.M.: Determination of position and radius of ball joints. In: Medical imaging 2002: image processing, vol. 4684, pp 1571–1577, San Diego (2002)Google Scholar
  3. 3.
    Rabbani, T., Van Den Heuvel, F.: Efficient Hough transform for automatic detection of cylinders in point clouds. ISPRS WG III/3, III/4 3, 60–65 (2005)Google Scholar
  4. 4.
    Hough, P.V.C.: Method and means for recognizing complex patterns. U.S. Patent No. 3069654, December 1962Google Scholar
  5. 5.
    Ballard, D.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 13(2), 111–122 (1981)CrossRefzbMATHGoogle Scholar
  6. 6.
    Borrmann, D., Elseberg, J., Lingemann, K., Nüchter, A.: The 3d hough transform for plane detection in point clouds: a review and a new accumulator design. 3D Res. 2, 1–13 (2011)Google Scholar
  7. 7.
    Tarsha-Kurdi, F., Landes, T., Grussenmeyer, P.: Hough-transform and extended Ransac algorithms for automatic detection of 3d building roof planes from lidar data. In: Rönnholm, P., Hyyppä, H., Hyyppä, J. (eds.) ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, pp. 407–412. Espoo, Finland (2007)Google Scholar
  8. 8.
    Borrmann, D., Elseberg, J., Lingemann, K., Nüchter, A.: A data structure for the 3d Hough transform for plane detection. In: Proceedings of the 5th IFAC Symposium on Intelligent Autonomous Vehicles (IAV ’10), Lecce, Italy (2010)Google Scholar
  9. 9.
    Bernal-Marin, M., Bayro-Corrochano, E.: Integration of Hough transform of lines and planes in the framework of conformal geometric algebra for 2d and 3d robot vision. Pattern Recognit. Lett. 32(16), 2213–2223 (2011)CrossRefGoogle Scholar
  10. 10.
    Illingworth, J., Kittler, J.: A survey of the Hough transform. Comput. Vis. Graph. Image Process. 44(1), 87–116 (1988)CrossRefGoogle Scholar
  11. 11.
    Hart, P.: How the Hough transform was invented [dsp history]. Signal Process. Mag. IEEE 26(6), 18–22 (2009)CrossRefGoogle Scholar
  12. 12.
    Bastien, P., Dunn, L.: Global transformations in pattern recognition of bubble chamber photographs. Comput. IEEE Trans. C–20(9), 995–1001 (1971)CrossRefGoogle Scholar
  13. 13.
    Bazin, M.J., Benoit, J.W.: Off-line global approach to pattern recognition for bubble chamber pictures. Nucl. Sci. IEEE Trans. 12(4), 291–293 (1965)CrossRefGoogle Scholar
  14. 14.
    Rosenfeld, A.: Picture processing by computer. ACM Comput. Surv. 1(3), 147–176 (1969)CrossRefzbMATHGoogle Scholar
  15. 15.
    Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)Google Scholar
  16. 16.
    Illingworth, J., Kittler, J.: The adaptive Hough transform. Pattern Anal. Mach. Intel. IEEE Trans. PAMI–9(5), 690–698 (1987)CrossRefGoogle Scholar
  17. 17.
    Tsuji, S., Matsumoto, F.: Detection of ellipses by a modified Hough transformation. Comput. IEEE Trans. C–27(8), 777–781 (1978)CrossRefGoogle Scholar
  18. 18.
    Yuen, H.K., Princen, J., Illingworth, J., Kittler, J.: Comparative study of Hough transform methods for circle finding. Image Vis. Comput. 8(1), 71–77 (1990)CrossRefGoogle Scholar
  19. 19.
    Kiryati, N., Eldar, Y., Bruckstein, A.: A probabilistic Hough transform. Pattern Recognit. 24(4), 303–316 (1991)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Xu, L., Oja, E., Kultanen, P.: A new curve detection method: randomized Hough transform (rht). Pattern Recognit. Lett. 11(5), 331–338 (1990)CrossRefzbMATHGoogle Scholar
  21. 21.
    Kultanen, P., Xu, L., Oja, E.: Randomized Hough transform (rht). In: Pattern Recognition. Proceedings of 10th International Conference, vol. 1, pp. 631–635 (1990)Google Scholar
  22. 22.
    Kiryati, N., Kälviäinen, H., Alaoutinen, S.: Randomized or probabilistic hough transform: unified performance evaluation. Pattern Recognit. Lett. 21(13–14), 1157–1164 (2000) (selected papers from the 11th Scandinavian conference on image)Google Scholar
  23. 23.
    Lu, W., Tan, J.: Detection of incomplete ellipse in images with strong noise by iterative randomized Hough transform (irht). Pattern Recognit. 41(4), 1268–1279 (2008)CrossRefzbMATHGoogle Scholar
  24. 24.
    Princen, J., Illingworth, J., Kittler, J.: A formal definition of the Hough transform: properties and relationships. J. Math. Imaging Vis. 1, 153–168 (1992)CrossRefGoogle Scholar
  25. 25.
    Hsu, C.-C., Huang, J.S.: Partitioned Hough transform for ellipsoid detection. Pattern Recognit. 23(3–4), 275–282 (1990)CrossRefGoogle Scholar
  26. 26.
    Taylor, R.: An efficient implementation of decomposable parameter spaces. In: Pattern recognition. Proceedings of 10th International Conference, vol. 1, pp. 613–619 (1990)Google Scholar
  27. 27.
    Cao, M., Ye, C., Doessel, O., Liu, C.: Spherical parameter detection based on hierarchical Hough transform. Pattern Recognit. Lett. 27(9), 980–986 (2006)CrossRefGoogle Scholar
  28. 28.
    Ogundana, O.O., Coggrave, C.R., Burguete, R.L., Huntley, J.M.: Fast Hough transform for automated detection of spheres in three-dimensional point clouds. Opt. Eng. 46(5), 051002-1–051002-11 (2007)Google Scholar
  29. 29.
    Kharbat, M., Aouf, N., Tsourdos, A., White, B.: Sphere detection and tracking for a space capturing operation. In: Advanced Video and Signal Based Surveillance. AVSS 2007. IEEE Conference, pp. 182–187 (2007)Google Scholar
  30. 30.
    Abuzaina, A., Nixon, M., Carter, J.: Sphere detection in kinect point clouds via the 3d hough transform. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) Computer Analysis of Images and Patterns, vol. 8048 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp. 290–297 (2013)Google Scholar
  31. 31.
    Khoshelham, K.: Accuracy analysis of kinect depth data. ISPRS Works. Laser Scan. 38, 1 (2011)Google Scholar
  32. 32.
    Smisek, J., Jancosek, M., Pajdla, T.: 3d with kinect. In: Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference, pp. 1154–1160 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marco Camurri
    • 2
  • Roberto Vezzani
    • 1
  • Rita Cucchiara
    • 1
  1. 1.University of Modena and Reggio EmiliaModenaItaly
  2. 2.Department of Advanced RoboticsIstituto Italiano di TecnologiaGenoaItaly

Personalised recommendations