Machine Vision and Applications

, Volume 25, Issue 6, pp 1519–1547 | Cite as

Visual lane analysis and higher-order tasks: a concise review

Original Paper

Abstract

Lane detection, lane tracking, or lane departure warning have been the earliest components of vision-based driver assistance systems. At first (in the 1990s), they have been designed and implemented for situations defined by good viewing conditions and clear lane markings on highways. Since then, accuracy for particular situations (also for challenging conditions), robustness for a wide range of scenarios, time efficiency, and integration into higher-order tasks define visual lane detection and tracking as a continuing research subject. The paper reviews past and current work in computer vision that aims at real-time lane or road understanding under a comprehensive analysis perspective, for moving on to higher-order tasks combined with various lane analysis components, and introduces related work along four independent axes as shown in Fig. 2. This concise review provides not only summarizing definitions and statements for understanding key ideas in related work, it also presents selected details of potentially applicable methods, and shows applications for illustrating progress. This review helps to plan future research which can benefit from given progress in visual lane analysis. It supports the understanding of newly emerging subjects which combine lane analysis with more complex road or traffic understanding issues. The review should help readers in selecting suitable methods for their own targeted scenario.

Keywords

Lane detection Tracking Road modelling Free space Curb detection Driver assistance  Real-view navigation 

Abbreviations

ACC

Adaptive cruise control

AR

Augmented reality

BPM

Belief-propagation matching

DA

Driver assistance

DEM

Digital elevation map

DT

Distance transform

ECCV

European Conference Computer Vision

EDT

Euclidean distance transform

EISATS

enpeda image sequence analysis test site

enpeda

Environment perception and driver assistance

ETRI

Electronics Telecommunications Research Institute

GCM

Graph-cut matching

GPS

Global positioning system

HT

Hough transform

HCI

Heidelberg Collaboratory for Image Processing

HUD

Head-up display

IHC

Intelligent headlight control

IPM

Inverse perspective mapping

iSGM

Iterative SGM

KITTI

Karlsruhe Institute Technology and Toyota Institute

LCW

Lane change warning

LDW

Lane departure warning

LIDAR

Light detection and ranging

MCLDW

Multi-camera lane departure warning

ODT

Orientation distance transform

PDF

Point-distribution function

RANSAC

Random sample consensus

RODT

Row component of ODT

ROI

Region of interest

SGM

Semi-global matching

SHT

Statistical Hough transform

SLAM

Simultaneous localization and mapping

Notes

Acknowledgments

We thank all the colleagues who gave their permissions for the inclusion of their figures into this survey. We also thank Ali Al-Sarraf, Mahdi Rezaei, and Junli Tao, members of the .enpeda.. group, The University of Auckland, for help in collecting references and related discussions.

References

  1. 1.
    Akaho, K., Nakagawa, T., Yamaguchi, Y., Kawai, K., Kato, H., Nishida, S.: A study and evaluation on route guidance of a car navigation system based on augmented reality. In: Jacko, J.A. (ed.) Human-Computer Interaction, LNCS 6763, pp. 357–366 (2011)Google Scholar
  2. 2.
    Al Sarraf, A., Shin, B.-S., Xu, Z., Klette, R.: Ground truth and performance evaluation of lane border detection. Technical Report, MItech-TR 85, The University of Auckland (2013)Google Scholar
  3. 3.
    Álvarez, J.M., López, A.M., Baldrich, R.: Illuminant invariant model-based road segmentation. In: Proceedings of the IEEE Intelligent Vehicle Symposium (2008)Google Scholar
  4. 4.
    Álvarez, J.M., López, A.M.: Road detection based on illuminant invariance. IEEE Trans. Intell. Transp. Syst. 12, 1524–90520 (2011)CrossRefGoogle Scholar
  5. 5.
    Aly, M.: Real time detection of lane markers in urban streets. In: Proceedings of the IEEE Intelligent Vehicle Symposium, pp. 7–12 (2008)Google Scholar
  6. 6.
    Anonymous: Richtlinien für die Markierung von Strassen, RMS. Forschungsgesellschaft für das Strassenwesen (1980)Google Scholar
  7. 7.
    Anonymous: Holographic heads-up display for car mirrors. www.telovation.com/articles/holographic-heads-display-car-mirrors.html (2009)
  8. 8.
    Apostoloff, N., Zelinsky, A.: Robust vision based lane tracking using multiple cues and particle filtering. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 558–563 (2003)Google Scholar
  9. 9.
    Apostoloff, N., Zelinsky, A.: Vision in and out of vehicles: Integrated driver and road scene monitoring. Int. J. Robotics Res. 28, 774–801 (2009)CrossRefGoogle Scholar
  10. 10.
    Aufrére, R., Chapuis, R., Chausse, F.: A model-driven approach for real-time road recognition. Mach Vis Appl 13, 95–107 (2001)Google Scholar
  11. 11.
    Badino, H., Franke, U., Mester, R.: Free space computation using stochastic occupancy grids and dynamic programming. In: Proceedings of the ICCV Workshop Dynamical Vision (2007)Google Scholar
  12. 12.
    Bae, J.H., Song, J.B.: Monocular vision-based lane detection using segmented regions from edge information. In: Proceedings of the URAI, pp. 499–502 (2011)Google Scholar
  13. 13.
    Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 13, 111–122 (1981)CrossRefMATHGoogle Scholar
  14. 14.
    Bar Hillel, A., Lerner, R., Levi, D., Raz, G.: Recent progress in road and lane detection: a survey. Mach Vis Appl 23, 19 (2012)Google Scholar
  15. 15.
    Bellino, M., de Meneses, Y.L., Ryser, P., Jacot, J.: Lane detection algorithm for an onboard camera. In: SPIE Proceedings of the 5663, Photonics Automobile, pp. 102–111 (2005)Google Scholar
  16. 16.
    Bertozzi, M., Broggi, A.: GOLD—a parallel real-time stereo vision system for generic obstacle and lane detection. IEEE Trans. Image Process. 7, 62–81 (1998)CrossRefGoogle Scholar
  17. 17.
    Borkar, A.: Multi-viewpoint lane detection with applications in driver safety systems. PhD thesis, Georgia Institute of Technology (2012)Google Scholar
  18. 18.
    Borkar, A., Hayes, M., Smith, M.T.: Lane detection and tracking using a layered approach. In: Proceedings of the Advanced Concepts Intelligent Vision Systems, LNCS 5807, pp. 474–484 (2009)Google Scholar
  19. 19.
    Borkar, A., Hayes, M., Smith, M.T.: An efficient method to generate ground truth for evaluating lane detection systems. In Proceedings of the IEEE International Conference Acoustics Speech, Signal Processing, pp. 1090–1093 (2010)Google Scholar
  20. 20.
    Borkar, A., Hayes, M., Smith, M.T.: A novel lane detection system with efficient ground truth generation. IEEE Trans. Intell. Transp. Syst. 13, 365–374 (2012)CrossRefGoogle Scholar
  21. 21.
    Borkar, A., Hayes, M., Smith, M.T., Pankanti, S.: A layered approach to robust lane detection at night. In: Proceedings of the Computational Intelligence Vehicles Vehicular Systems, pp. 51–57 (2009)Google Scholar
  22. 22.
    Byun, J., Na, K.I., Noh, M., Kim, S.: ESTRO: design and development of intelligent autonomous vehicle for shuttle service in the ETRI . In: Proceedings of the Workshop Planning Perception Navigation Intelligent Vehicles, Portugal (2012)Google Scholar
  23. 23.
    Boyraz, P., Yang, X., Hansen, J.H.L.: Computer vision systems for ‘context-aware’ active vehicle safety and driver assistance. In: Hansen, J.H.L. (ed.) Digital Signal Processing for In-Vehicle Systems and Safety, pp. 217–227, Springer, Berlin (2012)Google Scholar
  24. 24.
    Broggi, A.: Robust real-time lane and road detection in critical shadow conditions. In: Proceedings of the IEEE Intelligent Vehicle Symposium, pp. 353–358 (1995)Google Scholar
  25. 25.
    Chen, Y., He, M., Zhang, Y.: Robust lane detection based on gradient direction. In: Proceedings of the IEEE International Conference Industrial Electronics Applications, pp. 1547–1552 (2011)Google Scholar
  26. 26.
    Dong, Y., Hu, Z., Uchimura, K., Murayama, N.: Driver inattention monitoring system for intelligent vehicles: A review. IEEE Trans. Intell. Transp. Syst. 12, 596–614 (2011)CrossRefGoogle Scholar
  27. 27.
    Choi, J., Lee, J., Kim, D., Soprani, G., Cerri, P., Broggi, A., Yi, K.: Environment-detection-and-mapping algorithm for autonomous driving in rural or off-road environment. IEEE Trans. Intell. Transp. Syst. 13, 974–982 (2012)CrossRefGoogle Scholar
  28. 28.
    Choi, K.-H., Park, S.-Y., Kim, S.-H., Lee, K.-S., Park, J.-H., Cho, S.-I., Park, J.-H.: Methods to detect road features for video-based in-vehicle navigation systems. J. Intell. Transp. Syst. Technol. Plan. Operat. 14, 13–26 (2010)CrossRefMATHGoogle Scholar
  29. 29.
    Clanton, J.M., Bevly, D.M., Scottedward Hodel, A.: A low-cost solution for integrated multisensor lane departure warning system. IEEE Trans. Intell. Transp. Syst. 10:47–59 (2009)Google Scholar
  30. 30.
    Crisman, J.D., Thorpe, C.E.: SCARF: a colour vision system that tracks roads and intersections. IEEE Trans. Robotics Autom. 9, 49–58 (1993)CrossRefGoogle Scholar
  31. 31.
    Dahyot, R.: Statistical Hough transform. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1502–1509 (2009)CrossRefGoogle Scholar
  32. 32.
    Danescu, R., Nedevschi, S., Meinecke, M.M., To, T.B.: Lane geometry estimation in urban environments using a stereo vision system. In: Proceedings of the International Conference Intelligent Transportation Systems, pp. 271–276 (2007)Google Scholar
  33. 33.
    Danescu, R., Nedevschi, S.: Probabilistic lane tracking in difficult road scenarios using stereovision. IEEE Trans. Intell. Transp. Syst. 10, 272–282 (2009)CrossRefGoogle Scholar
  34. 34.
    Danescu, R., Nedevschi, S.: New results in stereovision based lane tracking. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 230–235 (2011)Google Scholar
  35. 35.
    Deusch, H., Wiest, J., Reuter, S., Szczot, M., Konrad, M., Dietmayer, K.: A random finite set approach to multiple lane detection. In: Proceedings of the International IEEE Conference Intelligent Transportation Systems, pp. 270–275 (2012)Google Scholar
  36. 36.
    Dickmanns, E.D.: Dynamic Vision for Perception and Control of Motion. Springer, London (2007)Google Scholar
  37. 37.
    Dickmanns, E.D., Mysliwetz, B.D.: Recursive 3-D road and relative ego-state recognition. IEEE Trans. Pattern Recognit. Mach. Intell. 14, 199–213 (1992)CrossRefGoogle Scholar
  38. 38.
    Dornaika, F., Álvarez, J.M., Sappa, A.D., López, A.M.: A new framework for stereo sensor pose through road segmentation and registration. IEEE Trans. Intell. Transp. Syst. 12, 954–966 (2011)CrossRefGoogle Scholar
  39. 39.
    Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15, 11–15 (1972)CrossRefGoogle Scholar
  40. 40.
    Ecabert, O., Thiran, J.P.: Adaptive Hough transform for the detection of natural shapes under weak affine transformations. Pattern Recognit. 25, 1411–1419 (2004)CrossRefGoogle Scholar
  41. 41.
    Eidehall, A., Gustafsson, F.: Combined road prediction and target tracking in collision avoidance. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 619–624 (2004)Google Scholar
  42. 42.
    Fabbri, R., Da, L., Costa, F., Torelli, J.C., Bruno, O.M.: 2D Euclidean distance transform algorithms: a comparative survey. ACM Computing Surveys, 40, article no. 2 (2008)Google Scholar
  43. 43.
    Fan, C., Hou, L., Di, S., Xu, J.: Research on the lane detection algorithm based on zoning Hough transformation. Adv. Mater. Res. 490–495, 1862–1866 (2012)CrossRefGoogle Scholar
  44. 44.
    Fardi, B., Wanielik, G.: Hough transformation based approach for road border detection in infrared images. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 549–554 (2004)Google Scholar
  45. 45.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transform of sampled functions. Cornell Computing and Information Science, pp. 2004–1963. Technical Report (TR) (2004)Google Scholar
  46. 46.
    Felisa, M., Zani, P.: Robust monocular lane detection in urban environments. In: Proceedings of the IEEE Intelligent Vehicle Symposium, pp. 591–596 (2010)Google Scholar
  47. 47.
    Finlayson, G., Hordley, S., Lu, C., Drew, M.: On the removal of shadows from images. IEEE Trans. Pattern Anal. Mach. Intell. 28, 59–68 (2006)CrossRefGoogle Scholar
  48. 48.
    Fletcher, L., Zelinsky, A.: Driver state monitoring to mitigate distraction. In: Proceedings of the International Conference Distractions Driving, Australia (2007)Google Scholar
  49. 49.
    Ga, C., Yu, K.: Design of real-view navigation system with virtual path mapping technique. In: Proceedings of the ASPRS/MAPPS (2009)Google Scholar
  50. 50.
    Gackstatter, C., Thomas, S., Heinemann, P., Klinke, G.: Stable road lane model based on clothoids. In: Proceedings of the International Forum Advanced Microsystems Automotive Applications (2010)Google Scholar
  51. 51.
    Gehrig, S., Eberli, F., Meyer, T.: A real-time low-power stereo vision engine using semi-global matching. In: Proceedings of the International Conference Computer Vision Systems, LNCS 5815, pp. 134–143 (2009)Google Scholar
  52. 52.
    Gern, A., Moebus, R., Franke, U.: Vision-based lane recognition under adverse weather conditions using optical flow. Proc. IEEE Intell. Veh. Symp. 2, 652–657 (2002)Google Scholar
  53. 53.
    Guan, S., Klette, R., Woo, Y.W. : Belief propagation for stereo analysis of night-vision sequences. In: Proceedings of the Pacific-Rim Symposium Image Video Technology, LNCS 5414, pp. 932–943 (2009)Google Scholar
  54. 54.
    Hashimoto, K., Nakayama, S., Saito, T., Ishida, S., Unuora, K., Ishii, J., Oono, N., Okada, Y.: An image processing architecture and a motion control method for an autonomous vehicle. In: Proceedings of the IEEE Intelligent Vehicles Symposium, New York (2002)Google Scholar
  55. 55.
    Hermann, S., Boerner, A., Klette, R.: Mid-level segmentation and segment tracking for long-range stereo analysis. In: Proceedings of the Pacific-Rim Symposium Image Video Technology, LNCS 7087, pp. 224–235, Springer, Berlin (2011)Google Scholar
  56. 56.
    Hermann, S., Klette, R.: The naked truth about cost functions for stereo matching. MItech-TR 33, The University of Auckland (2009)Google Scholar
  57. 57.
    Hermann, S., Klette, R.: Iterative semi-global matching for robust driver assistance systems. In: Proceedings of the Asian Conference Computer Vision, LNCS 7726, pp. 465–478 (2013)Google Scholar
  58. 58.
    Hirschmüller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: Proceedings of the IEEE International Conference Computer Vision. Pattern Recognition, vol. 2, pp. 807–814 (2005)Google Scholar
  59. 59.
    Hsiao, P.Y., Yeh, C.W., Huang, S.S., Fu, L.C.: A portable vision-based real-time lane departure warning system: day and night. IEEE Trans. Veh. Technol. 58, 2089–2094 (2009)CrossRefGoogle Scholar
  60. 60.
    Isard, M., Blake, A.: Condensation: conditional density propagation for visual tracking. Int. J. Comput. Vis. 29, 5–28 (1998)CrossRefGoogle Scholar
  61. 61.
    Jeong, P., Nedevschi, S.: Efficient and robust classification method using combined feature vector for lane detection. IEEE Trans. Circuits Syst. Video Technol. 15, 528–537 (2005)CrossRefGoogle Scholar
  62. 62.
    Jiang, R., Klette, R., Vaudrey, T., Wang, S.: Lane detection and tracking using a new lane model and distance transform. Mach. Vis. Appl. 22, 721–737 (2011)CrossRefGoogle Scholar
  63. 63.
    Jiang, R., Klette, R., Vaudrey, T., Wang, S.: Corridor detection for vision-based driver assistance systems. Int. J. Pattern Recognit. Artif. Intell. 25, 253–272 (2011)CrossRefMathSciNetGoogle Scholar
  64. 64.
    Jiang, R., Klette, R., Wang, S., Vaudrey, T.: New lane model and distance transform for lane detection and tracking. In: Proceedings of the Computer Analysis Images Patterns, LNCS 5702, pp. 1044–1052 (2009)Google Scholar
  65. 65.
    Jiang, R., Klette, R., Wang, S., Vaudrey, T.: Ego-vehicle corridors for vision-based driver assistance. In: Proceedings of the IWCIA, LNCS 5852, pp. 238–251 (2009)Google Scholar
  66. 66.
    Jiang, R., Terauchi, M., Klette, R., Wang, S., Vaudrey, T.: Low-level image processing for lane detection and tracking. In: Proceedings of the ArtsIT, LNICST 30, pp. 190–197 (2009)Google Scholar
  67. 67.
    Jochem, T.M., Pomerleau, D.A., Thorpe, C.E.: MANIAC: a next generation neurally based autonomous road follower. In: Proceedings of the International Conference Intelligent Autonomous Systems, pp. 473–479 (1993)Google Scholar
  68. 68.
    Jung, C.R., Kelber, C.R.: A lane departure warning system based on a linear-parabolic lane model. In: Proceedings of the IEEE Intelligent Vehicle Symposium, pp. 891–895 (2004)Google Scholar
  69. 69.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)CrossRefGoogle Scholar
  70. 70.
    Kim, Z.: Realtime lane tracking of curved local road. In: Proceedings of the International Conference Intelligent Transportation Systems, pp. 1149–1155 (2006)Google Scholar
  71. 71.
    Kim, Z.: Robust lane detection and tracking in challenging scenarios. IEEE Trans. Intell. Transp. Syst. 9, 16–26 (2008)CrossRefGoogle Scholar
  72. 72.
    Klette, R.: Concise Computer Vision. Springer, London (2014)CrossRefMATHGoogle Scholar
  73. 73.
    Klette, R., Morales, S., Vaudrey, T., Morris, J., Rabe, C., Haeusler, R.: Stereo and motion analysis of long stereo image sequences for vision-based driver assistance. keynote at DAGM 2009, Jena University (2009)Google Scholar
  74. 74.
    Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)MATHGoogle Scholar
  75. 75.
    Kneepkens, R.E.J.: Hough-based road detection. Master thesis, TU Eindhoven (2005)Google Scholar
  76. 76.
    Kreucher, C., Lakshmanan, S.: LANA: a lane extraction algorithm that uses frequency domain features. IEEE Trans. Robotics Autom. 15, 343–350 (1999)CrossRefGoogle Scholar
  77. 77.
    Kreucher, C., Lakshmanan, S.: A frequency domain approach to lane detection in roadway images. In: Proceedings of the International Conference Image Processing, pp. 31–35 (1999)Google Scholar
  78. 78.
    Khosla, D.: Accurate estimation of forward path geometry using two-clothoid road model. Proc. IEEE Intell. Veh. Symp. 1, 154–159 (2002)Google Scholar
  79. 79.
    Labayrade, R., Aubert, D., Tarel, J.-P.: Real-time obstacle detection in stereovision on non flat road geometry through ‘v-disparity’ representation. In: Proceedings of the Symposium Intelligent Vehicles, pp. 646–651 (2002)Google Scholar
  80. 80.
    Lee, J.W., Cho, J.S.: Effective lane detection and tracking method using statistical modelling of colour and lane edge-orientation. In: Proceedings of the IEEE International Conference Computer Sciences Convergence IT, pp. 1586–1591 (2009)Google Scholar
  81. 81.
    Lee, S., Kwon, W.: Robust lane keeping from novel sensor fusion. In: Proceedings of the IEEE International Conference Robotics and Automation, vol. 4, pp. 3704–3709 (2001)Google Scholar
  82. 82.
    Li, H., Nashashibi, F.: Robust real-time lane detection based on lane mark segment features and general a priori knowledge. In: Proceedings of the IEEE International Conference Robotics, Biometrics, pp. 812–817 (2011)Google Scholar
  83. 83.
    Li, Q., Zheng, N., Cheng, H.: Springrobot: a prototype autonomous vehicle and its algorithms for lane detection. IEEE Trans. Intell. Transp. Syst. 5, 300–308 (2004)CrossRefGoogle Scholar
  84. 84.
    Lipski, C., Scholz, B., Berger, B., Linz, C., Stich, T.: A fast and robust approach to lane marking detection and lane tracking. In: Proceedings of the IEEE Southwest Symposium Image Analysis, Interpretation, pp. 57–60 (2008)Google Scholar
  85. 85.
    Liu, G., Worgotter, F., Markelie, I.: Lane shape estimation using a partitioned particle filter for autonomous driving. In: Proceedings of the IEEE International Conference Robotics Automation, pp. 1627–1633 (2011)Google Scholar
  86. 86.
    Liu, G., Worgotter, F., Markelie, I.: Combining statistical Hough transform and particle filter for robust lane detection and tracking. In: Proceedings of the IEEE Intelligent Vehicle Symposium, pp. 993–997 (2010)Google Scholar
  87. 87.
    Liu, W., Zhang, H., Duan, B., Yuan, H., Zhao, H.: Vision-based realtime lane marking detection and tracking. In: Proceedings of the IEEE International Conference Intelligent Transportation Systems, pp. 49–54 (2008)Google Scholar
  88. 88.
    Liu, X., Xu, X., Dai, B.: Vision-based long-distance lane perception and front vehicle location for autonomous vehicles on highway roads. J. Cent. South. Univ. 19, 1454–1465 (2012)CrossRefGoogle Scholar
  89. 89.
    Liu, X., Wang, G., Liao, J., Li, B., He, Q., Meng, M.Q.H.: Detection of geometric shape for traffic lane and mark. In: Proceedings of the IEEE International Conference Information Automation, pp. 395–399 (2012)Google Scholar
  90. 90.
    Loose, H., Franke, U.: Kalman particle filter for lane recognition on rural roads. In: Proceedings of the IEEE Intelligent Vehicles Symposium (2009)Google Scholar
  91. 91.
    Loose, H., Franke, U.: B-spline based road model for 3D lane recognition. In: Proceedings of the ITSC (2010)Google Scholar
  92. 92.
    López, A.M., Serrat, J., Cañero, C., Lumbreras, F., Graf, T.: Robust lane markings detection and road geometry computation. Int. J. Autom. Technol. 11, 395–407 (2010)CrossRefGoogle Scholar
  93. 93.
    Luong, Q.T., Weber, J., Koller, D., Malik, J.: An integrated stereo-based approach to automatic vehicle guidance. In: Proceedings of the International Conference Computer Vision, pp. 52–57 (2002)Google Scholar
  94. 94.
    Marzotto, R., Zoratti, P., Bagni, D., Colombari, A., Murino, V.: A real-time versatile roadway path extraction and tracking on an FPGA platform. Comput. Vis. Image Underst. 114, 1164–1179 (2010)CrossRefGoogle Scholar
  95. 95.
    McCall, J.C., Trivedi, M.M.: Video-based lane estimation and tracking for driver assistance: Survey, system, and evaluation. IEEE Trans. Intell. Transp. Syst. 7, 20–37 (2006)CrossRefGoogle Scholar
  96. 96.
    McDonald, J.: Detecting and tracking road markings using the Hough transform. In: Proceedings of the Irish Machine Vision and Image Processing (2001)Google Scholar
  97. 97.
    Meuter, M., Müller-Schneiders, S., Mika, A., Hold, S., Nunn, C., Kummert, A.: A novel approach to lane detection and tracking. In: Proceedings of the IEEE International Conference Intelligent Transportation Systems, pp. 1–6 (2009)Google Scholar
  98. 98.
    Morales, S., Klette, R.: Ground truth evaluation of stereo algorithms for real world applications. In: Proceedings of the CVVT, LNCS 6469, pp. 152–162, ACCV, workshop (2011)Google Scholar
  99. 99.
    Muad, A.M., Hussain, A., Samad, S.A.: Implementation of inverse perspective mapping algorithm for the development of an automatic lane tracking system. In: Proceedings of the IEEE TENCON, pp. 207–210 (2004)Google Scholar
  100. 100.
    Narzt, W., Pomberger, G., Ferscha, A., Kolb, D., Muller, R., Wieghardt, J., Hortner, H., Lindinger, C.: A new visualization concept for navigation systems. In: LNCS 3196, pp. 440–451 (2004)Google Scholar
  101. 101.
    Nasirudin, M.A., Arshad, M.R.: A feature-based lane detection system using Hough transform method. In: Proceedings of the Seminar Intelligent Technology Applications, p. 4 (2007)Google Scholar
  102. 102.
    Nedevschi, S., Oniga, F., Danescu, R., Graf, T., Schmidt, R.: Increased accuracy stereo approach for 3D lane detection. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 42–49 (2006)Google Scholar
  103. 103.
    Nedevschi, S., Schmidt, R., Graf, T., Danescu, R., Frentiu, D., Marita, T., Oniga, F., Pocol, C.: 3D lane detection system based on stereovision. In: Proceedings of the International Conference Intelligent Transportation Systems, pp. 161–166 (2004)Google Scholar
  104. 104.
    Nieto, M., Salgado, L., Jaureguizar, F., Arrospide, J.: Robust multiple lane road modelling based on perspective analysis. In: Proceedings of the IEEE International Conference Image Processing, pp. 2396–2399 (2008)Google Scholar
  105. 105.
    Oniga, F., Nedevschi, S.: Polynomial curb detection based on dense stereovision for driving assistance. In: Proceedings of the International IEEE Conference Intelligent Transportation Systems, pp. 1110–1115 (2010)Google Scholar
  106. 106.
    Oniga, F., Nedevschi, S., Meinecke, M.M.: Curb detection based on a multi-frame persistence map for urban driving scenarios. In: Proceedings of the International IEEE Conference Intelligent Transportation Systems, pp. 67–72 (2008)Google Scholar
  107. 107.
    Park, H., Kim, K.-H.: Efficient information representation method for driver-centered AR-HUD system. In: Proceedings of the User Experience Novel Technological Environments, LNCS 8014, pp. 393–400 (2013)Google Scholar
  108. 108.
    Pepy, R., Lambert, A., Mounier, H.: Path planning using a dynamic vehicle model. In: Proceedings of the IEEE Conferenc Information Communication Technologies, pp. 781–786 (2006)Google Scholar
  109. 109.
    Pomerleau, D.: RALPH: rapidly adapting lateral position handler. In: Proceedings of the IEEE Intelligent Vehicle Symposium, pp. 506–511 (1995)Google Scholar
  110. 110.
    Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte Verhandlungen Königlich-Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse 69, 262–277 (1917)Google Scholar
  111. 111.
    Ren, F., Huang, J., Terauchi, M., Jiang, R., Klette, R.: Lane detection on the iPhone. In: Proceedings of the ArtsIT, LNICST 30, pp. 198–205 (2009)Google Scholar
  112. 112.
    Revilloud, M., Gruyer, D., Pollard, E.: Generator of road marking textures and associated ground truth applied to the evaluation of road marking detection. In: Proceedings of the IEEE International Conference Intelligent Transportation Systems, pp. 933–938 (2012)Google Scholar
  113. 113.
    Rezaei, M., Klette, R.: Simultaneous analysis of driver behaviour and road condition for driver distraction detection. Int. J. Image Data Fusion 2, 217–236 (2011)CrossRefGoogle Scholar
  114. 114.
    Satzoda, R.K., Sathyanarayana, S., Srikanthan, T., Sathyanarayana, S.: Hierarchical additive Hough transform for lane detection. IEEE Embed. Syst. Lett. 2(2), 23–26 (2010)CrossRefGoogle Scholar
  115. 115.
    Satzoda, R.K., Trivedi, M.M.: Vision-based lane analysis: exploration of issues and approaches for embedded realization. In: Proceedings of the IEEE Computer Vision Pattern Recognition Workshops (2013)Google Scholar
  116. 116.
    Saudi, A., Teo, J., Hijazi, M.H.A., Sulaiman, J.: Fast lane detection with randomized Hough transform. In: Proceedings of the International Symposium Information Technology, vol. 4, pp. 1–5 (2008)Google Scholar
  117. 117.
    Schauwecker, K., Klette, R.: A comparative study of two vertical road modelling techniques. In: Proceedings of the CVVT, LNCS 6469, pp. 174–183, ACCV, workshop (2011)Google Scholar
  118. 118.
    Schauwecker, K., Morales, S., Hermann, S., Klette, R.: A comparative study of stereo-matching algorithms for road-modelling in the presence of windscreen wipers. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 7–12 (2011)Google Scholar
  119. 119.
    Sehestedt, S., Kodagoda, S., Alempijevic, A., Dissanayake, G.: Efficient lane detection and tracking in urban environments. In: Proceedings of the European Conference Mobile Robots, pp. 126–131 (2007)Google Scholar
  120. 120.
    Shin, B.-S., Caudillo, D., Klette, R.: Evaluation of two stereo matchers on long real-world video sequences. Pattern Recognition (to appear) (2014)Google Scholar
  121. 121.
    Siegemund, J., Franke, U., Förstner, W.: A temporal filter approach for detection and reconstruction of curbs and road surfaces based on conditional random fields. In: Proceedings of the IEEE Intelligent Vehicles Symposium (2011)Google Scholar
  122. 122.
    Siegemund, J., Pfeiffer, D., Franke, U., Förstner, W.: Curb reconstruction using conditional random fields. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 203–210 (2010)Google Scholar
  123. 123.
    Sivaraman, S., Trivedi, M.M.: Integrated lane and vehicle detection, localization, and tracking: a synergistic approach. IEEE Trans. Intell. Transp. Syst. 14, 906–917 (2013)CrossRefGoogle Scholar
  124. 124.
    Southall, B., Taylor, C.: Stochastic road shape estimation. Proc. Int. Conf. Comput. Vis. 1, 205–212 (2001)Google Scholar
  125. 125.
    Suaste, V., Caudillo, D., Shin, B.-S., Klette, R.: Third-eye stereo analysis evaluation enhanced by data measures. In: Proceedings of the Mexican Conference Pattern Recognition, LNCS 7914, pp. 74–83 (2013)Google Scholar
  126. 126.
    Taheri, S.: An investigation and design of slip control braking systems integrated with four wheel steering. Ph.D. dissertation, Clemson University (1990)Google Scholar
  127. 127.
    Tao, J., Shin, B.-S., Klette, R.: Wrong roadway detection for multi-lane roads. In: Proceedings of the Computer Analysis Images Patterns, LNCS 8048, pp. 50–58 (2013)Google Scholar
  128. 128.
    Utsuboya, O., Shimizu, T., Kurosawa, A.: Augmented reality head up display for car navigation system. In: SID Symposium Digest Technical Papers, volume 44, Blackwell Publishing Ltd, (2013)Google Scholar
  129. 129.
    Vaudrey, T., Morales, S., Wedel, A., Klette, R.: Generalized residual image s’ effect on illumination artefact removal for correspondence algorithms. Pattern Recognit. 44, 2034–2046 (2010)CrossRefGoogle Scholar
  130. 130.
    Wang, J.-G., Lin, C.-J., Chen, S.-M.: Applying fuzzy method to vision-based lane detection and departure warning system. Expert Syst. Appl. 37, 113–126 (2010)CrossRefMATHGoogle Scholar
  131. 131.
    Wang, J., Wu, Y., Liang, Z., Xi, Y.: Lane detection based on random Hough transform on region of interesting. In: Proceedings of the IEEE International Conference Information Automation, pp. 1735–1740 (2010)Google Scholar
  132. 132.
    Wang, Y., Bai, L., Fairhurst, M.: Robust road modelling and tracking using condensation. IEEE Trans. Intell. Transp. Syst. 9, 570–579 (2008)CrossRefGoogle Scholar
  133. 133.
    Wang, Y., Shen, D., Teoh, E.K.: Lane detection using Catmull-Rom spline. In: Proceedings of the IEEE Intelligent Vehicle Symposium, pp. 51–57 (1998)Google Scholar
  134. 134.
    Wang, Y., Teoh, E.K.: Object contour extraction using adaptive B-snake model. J. Math. Imaging Vis. 24, 295–306 (2006)CrossRefMathSciNetGoogle Scholar
  135. 135.
    Wang, Y., Teoh, E.K., Shen, D.: Lane detection and tracking using B-Snake. Image Vis. Comput. 22, 269–280 (2004)CrossRefGoogle Scholar
  136. 136.
    Wedel, A.: 3D motion analysis via energy minimization. PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn (2009)Google Scholar
  137. 137.
    Wedel, A., Badino, H., Rabe, C., Loose, H., Franke, U., Cremers, D.: B-spline modelling of road surfaces with an application to free space estimation. IEEE Trans. Intell. Transp. Syst. 10, 572–583 (2009)Google Scholar
  138. 138.
    Wedel, A., Franke, U., Badino, H., Cremers, D.: B-spline modelling of road surfaces with an application to free space estimation. In: Proceedings of the IEEE Intelligent Vehicle Symposium, pp. 828–833 (2008)Google Scholar
  139. 139.
    Wijesoma, W.S., Kodagoda, K.R.S., Balasuriya, A.P.: Road-boundary detection and tracking using ladar sensing. IEEE Trans. Robotics Autom. 20, 456–464 (2004) Google Scholar
  140. 140.
    Wu, B.F., Lin, C.T., Chen, Y.L.: Dynamic calibration and occlusion handling algorithms for lane tracking. IEEE Trans. Ind. Electron. 56, 1757–1773 (2009)Google Scholar
  141. 141.
    Wu, T., Ding, X.Q., Wang, S.J., Wang, K.Q.: Video object tracking using improved chamfer matching and condensation particle filter. In: SPIE Proceedings of the 6813, Machine Vision Applications, p. 4 (2008)Google Scholar
  142. 142.
    Xu, Z., Shin, B.-S.: A statistical method for peak localization in Hough space. In: Proceedings of the Pacific-Rim Symposium Image Video Technology, LNCS 8333, pp. 111–123 (2013)Google Scholar
  143. 143.
    Xu, Z., Shin, B.-S.: Accurate line segment detection with Hough transform based on minimum entropy. In: Proceedings of the Pacific-Rim Symposium Image Video Technology, LNCS 8333, pp. 254–264 (2013)Google Scholar
  144. 144.
    Yagi, Y., Brady, M., Kawasaki, Y., Yachida, M.: Active contour road model for smart vehicle. In: Proceedings of the International Conference Pattern Recognition, vol. 3, pp. 3819–3822 (2000)Google Scholar
  145. 145.
    Yamaguchi, K., Watanabe, A., Naito, T., Ninomiya, Y.: Road region estimation using a sequence of monocular images. In: Proceedings of the International Conference Pattern Recognition, pp. 1–4 (2008)Google Scholar
  146. 146.
    Youchun, X., Rongben, W., Shouwen, J.: A vision navigation algorithm based on linear lane model. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 240–245 (2000)Google Scholar
  147. 147.
    Yu, B., Jain, A.K.: Lane boundary detection using a multiresolution Hough transform. In: Proceedings of the the IEEE International Conference on Image Processing (2002)Google Scholar
  148. 148.
    Zhao, K., Meuter, M., Nunn, C., Muller, D., Muller-Schneiders, S., Pauli, J.: A novel multi-lane detection and tracking system. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 1084–1089 (2012)Google Scholar
  149. 149.
    Zhou, Y., Xu, R., Hu, X., Ye, Q.: A robust lane detection and tracking method based on computer vision. Meas. Sci. Technol. 17, 736–745 (2006)CrossRefGoogle Scholar
  150. 150.
    Zhou, S., Jiang, Y., Xi, J., Gong, J., Xiong, G., Chen, H.: A novel lane detection based on geometrical model and Gabor filter. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 59–64 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceThe University of AucklandAucklandNew Zealand
  2. 2.Computer Science DepartmentChangzhou Institute of TechnologyChangzhouChina

Personalised recommendations