Machine Vision and Applications

, Volume 25, Issue 4, pp 1067–1076 | Cite as

Temporal synchronization in mobile sensor networks using image sequence analysis

  • Darlan N. Brito
  • Flávio L. C. Pádua
  • Guilherme A. S. Pereira
Original Paper

Abstract

This paper addresses the problem of estimating the temporal synchronization in mobile sensors’ networks, by using image sequence analysis of their corresponding scene dynamics. Unlike existing methods, which are frequently based on adaptations of techniques originally designed for wired networks with static topologies, or even based on solutions specially designed for ad hoc wireless sensor networks, but that have a high energy consumption and a low scalability regarding the number of sensors, this work proposes a novel approach that reduces the problem of synchronizing a general number \(N\) of sensors to the robust estimation of a single line in \({\mathbb {R}}^{N+1}\). This line captures all temporal relations between the sensors and can be computed without any prior knowledge of these relations. It is assumed that (1) the network’s mobile sensors cross the field of view of a stationary calibrated camera that operates with constant frame rate and (2) the sensors trajectories are estimated with a limited error at a constant sampling rate, both in the world coordinate system and in the camera’s image plane. Experimental results with real-world and synthetic scenarios demonstrate that our method can be successfully used to determine the temporal alignment in mobile sensor networks.

Keywords

Mobile sensor networks Temporal alignment Visual object tracking Random sample consensus 

References

  1. 1.
    Brito, D.N., Pádua, F.L.C., Pereira, G.A.S., Carceroni, R.L.: Temporal synchronization of non-overlapping videos using known object motion. Pattern Recognit. Lett. 32, 38–46 (2011)CrossRefGoogle Scholar
  2. 2.
    Chong, C., Kumar, S.: Sensor networks: evolution, opportunities, and challenges. Proc. IEEE 91(8), 1247–1256 (2003)CrossRefGoogle Scholar
  3. 3.
    Ding, Y., Krislock, N., Qian, J., Wolkowicz, H.: Sensor network localization, euclidean distance matrix completions, and graph realization. Optim. Eng. 11, 45–66 (2010)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Huang, G., Zomaya, A.Y., Delicato, F.C., Pires, P.F.: An accurate on-demand time synchronization protocol for wireless sensor networks. J Parallel Distrib. Comput. 72(10), 1332–1346 (2012)CrossRefMATHGoogle Scholar
  6. 6.
    Isard, M., MacCormick, J.: BraMBLe: a bayesian multiple-blob tracker. In: IEEE International Conference on Computer Vision, pp. 34–41 (2001)Google Scholar
  7. 7.
    Jepson, A., Fleet, D., El-Maraghi, T.: Robust on-line appearance models for visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1296–1311 (2003)CrossRefGoogle Scholar
  8. 8.
    Kitahara, I., Saito, H., Akimichi, S., Onno, T., Ohta, Y., Kanade, T.: Large-scale virtualized reality. In: IEEE Conference on Computer Vision and Pattern Recognition (2001)Google Scholar
  9. 9.
    Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21, 558–565 (1978)CrossRefMATHGoogle Scholar
  10. 10.
    Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An Invitation to 3-D Vision—From Images to Geometric Models, 1st edn. Springer, New York (2003)Google Scholar
  11. 11.
    Medina, C., Segura, J.: Accurate time synchronization of ultrasonic TOF measurementsin IEEE 802.15.4 based wireless sensor networks. Ad Hoc Netw. 11(1), 442–452 (2013)CrossRefGoogle Scholar
  12. 12.
    Messom, C.H.: Synchronisation of vision based sensor networks with variable frame rates. Int. J. Comput. Appl. Technol. 39, 153–158 (2010)CrossRefGoogle Scholar
  13. 13.
    Pádua, F.L.C., Carceroni, R.L., Santos, G.A.M.R., Kutulakos, K.N.: Linear sequence-to-sequence alignment. IEEE Trans. Pattern Anal. Mach. Intell. 32, 304–320 (2010)CrossRefGoogle Scholar
  14. 14.
    Pereira, G., Kumar, V., Campos, M.: Localization and tracking in robot networks. In: IEEE International Conference on Advanced Robotics, pp. 465–470 (2003)Google Scholar
  15. 15.
    Pottie, G.J., Kaiser, W.J.: Wireless integrated network sensors. Commun. ACM 43, 51–58 (2000)CrossRefGoogle Scholar
  16. 16.
    Sivrikaya, F., Yener, B.: Time synchronization in sensor networks: a survey. IEEE Netw. 18, 45–50 (2004)CrossRefGoogle Scholar
  17. 17.
    Sommer, P., Wattenhofer, R.: Gradient clock synchronization in wireless sensor networks. In: International Conference on Information Processing in Sensor Networks, pp. 37–48. Washington, DC (2009)Google Scholar
  18. 18.
    Stankovic, J.A., Wood, A.D., He, T.: Realistic applications for wireless sensor networks. In: Nikoletseas, S., Rolim, J.D. (eds.) Theoretical Aspects of Distributed Computing in Sensor Networks, pp. 835–863. Springer, Berlin (2011)CrossRefGoogle Scholar
  19. 19.
    Swain, A., Hansdah, R.: An energy efficient and fault-tolerant clock synchronization protocol for wireless sensor networks. In: International Conference on Communication Systems and Networks, pp. 1–10 (2010)Google Scholar
  20. 20.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics, 1st edn. The MIT Press, USA (2005)MATHGoogle Scholar
  21. 21.
    Wang, Y., Nunez, F., Doyle, F.J.: Energy-efficient pulse-coupled synchronization strategy design for wireless sensor networks through reduced idle listening. IEEE Trans. Signal Process. 60(10) (2012). doi:10.1109/TSP.2012.2205685
  22. 22.
    Wolf, W., Velipasalar, S., Schlessman, J., Chen, C.Y., Lin, C.H.: Real-time distributed tracking. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1389–1392 (2007)Google Scholar
  23. 23.
    Wu, Y.C., Chaudhari, Q., Serpedin, E.: Clock synchronization of wireless sensor networks. IEEE Signal Process. Mag. 28, 124–138 (2011)CrossRefGoogle Scholar
  24. 24.
    Zhang, H., Shen, G., Jin, D.: An accurate localization method for video sensor network nodes. Adv. Mater. Res. 225–226, 531–535 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Darlan N. Brito
    • 1
  • Flávio L. C. Pádua
    • 2
  • Guilherme A. S. Pereira
    • 3
  1. 1.Department of Natural and Applied SciencesUniversidade Federal de Ouro PretoJoão MonlevadeBrazil
  2. 2.Department of ComputingCentro Federal de Educação Tecnológica de Minas GeraisBelo HorizonteBrazil
  3. 3.Department of Electrical EngineeringUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations