Advertisement

Machine Vision and Applications

, Volume 25, Issue 4, pp 955–969 | Cite as

A complete system for garment segmentation and color classification

  • Marco Manfredi
  • Costantino GranaEmail author
  • Simone Calderara
  • Rita Cucchiara
Original Paper

Abstract

In this paper, we propose a general approach for automatic segmentation, color-based retrieval and classification of garments in fashion store databases, exploiting shape and color information. The garment segmentation is automatically initialized by learning geometric constraints and shape cues, then it is performed by modeling both skin and accessory colors with Gaussian Mixture Models. For color similarity retrieval and classification, to adapt the color description to the users’ perception and the company marketing directives, a color histogram with an optimized binning strategy, learned on the given color classes, is introduced and combined with HOG features for garment classification. Experiments validating the proposed strategy, and a free-to-use dataset publicly available for scientific purposes, are finally detailed.

Keywords

Image retrieval Segmentation  Color clustering  Graph-cut 

References

  1. 1.
    Bertelli, L., Yu, T., Vu, D., Gokturk, B.: Kernelized structural SVM learning for supervised object segmentation. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2153–2160 (2011)Google Scholar
  2. 2.
    Bertini, M., Del Bimbo, A., Serra, G., Torniai, C., Cucchiara, R., Grana, C., Vezzani, R.: Dynamic pictorially enriched ontologies for video digital libraries. IEEE Multimed. 16(2), 41–51 (2009)CrossRefGoogle Scholar
  3. 3.
    Bossard, L., Dantone, M., Leistner, C., Wengert, C., Quack, T., Gool, L.V.: Apparel Classification with Style. In: Proceedings of the Asian Conference on Computer Vision (ACCV), pp. 1–14 (2012)Google Scholar
  4. 4.
    Boykov, Y.Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), vol. 1, pp. 105–112 (2001)Google Scholar
  5. 5.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cheng, C.-I., Liu, D.S.-M.: An intelligent clothes search system based on fashion styles. In: Proceedings of the International Conference on Machine Learning and Cybernetics (ICMLC), pp. 1592–1597 (2008)Google Scholar
  7. 7.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 886–893 (2005)Google Scholar
  8. 8.
    Dance, C.R., Csurka, G., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: ECCV Workshop on Statistical Learning in Computer Vision, pp. 1–22 (2004)Google Scholar
  9. 9.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B Stat. Methods 39(1), 1–38 (1977)Google Scholar
  10. 10.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Freixenet, J., Muñoz, X., Raba, D., Martí, J., Cufí, X.: Yet another survey on image segmentation: region and boundary information integration. In: Proceedings of the European Conference on Computer Vision (ECCV), vol. 2352, pp. 408–422 (2002)Google Scholar
  12. 12.
    Grana, C., Borghesani, D., Manfredi, M., Cucchiara, R.: A fast approach for integrating ORB descriptors in the bag of words model. In: Proceedings of IS &T/SPIE Electronic Imaging: Multimedia Content Access: Algorithms and Systems, San Francisco, California, USA, vol. 8667, pp. 866709-1–866709-8 (2013). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1662454
  13. 13.
    Heckbert, P.: Color image quantization for frame buffer display. In: Proceedings of the ACM SIGGRAPH International Conference on Computer Graphics and Interactive Techniques, pp. 297–307 (1982)Google Scholar
  14. 14.
    Hsu, C.-W., Lin, C.-J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)Google Scholar
  15. 15.
    Hu, Z., Yan, H., Lin, X.: Clothing segmentation using foreground and background estimation based on the constrained Delaunay triangulation. Pattern Recogn. 41(5), 1581–1592 (2008)Google Scholar
  16. 16.
    Kakumanu, P., Makrogiannis, S., Bourbakis, N.G.: A survey of skin-color modeling and detection methods. Pattern Recogn. 40(3), 1106–1122 (2007)CrossRefzbMATHGoogle Scholar
  17. 17.
    Kuettel, D., Ferrari, V.: Figure-ground segmentation by transferring window masks. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 558–565 (2012)Google Scholar
  18. 18.
    Leow, W.K., Li, R.: Adaptive binning and dissimilarity measure for image retrieval and classification. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 234–239 (2001)Google Scholar
  19. 19.
    Liu, S., Song, Z., Liu, G., Xu, C., Lu, H., Yan, S.: Street-to-shop: cross-scenario clothing retrieval via parts alignment and auxiliary set. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3330–3337 (2012)Google Scholar
  20. 20.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  21. 21.
    Manfredi, M., Grana, C., Cucchiara, R.: Automatic single-image people segmentation and removal for cultural heritage imaging. In: New Trends in Image Analysis and Processing, ICIAP 2013 Workshops, Napoli, Italy, pp. 188–197 (2013)Google Scholar
  22. 22.
    Pele, O., Werman, M.: A Linear time histogram metric for improved SIFT matching. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 495–508 (2008)Google Scholar
  23. 23.
    Pele, O., Werman, M.: Fast and robust earth mover’s distances. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 460–467 (2009)Google Scholar
  24. 24.
    Porikli, F.: Integral histogram: a fast way to extract histograms in Cartesian spaces. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 829–836 (2005)Google Scholar
  25. 25.
    Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: interactive foreground extraction using iterated graph cuts. In: Proceedings of the ACM SIGGRAPH International Conference on Computer Graphics and Interactive Techniques, pp. 309–314 (2004)Google Scholar
  26. 26.
    Rubner, Y., Tomasi, C., Guibas, L.J.: A Metric for Distributions with Applications to Image Databases. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 59–66 (1998)Google Scholar
  27. 27.
    van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1582–1596 (2010)CrossRefGoogle Scholar
  28. 28.
    Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227 (1990)Google Scholar
  29. 29.
    Sun, H.M.: Skin detection for single images using dynamic skin color modeling. Pattern Recogn. 43(4), 1413–1420 (2010)CrossRefGoogle Scholar
  30. 30.
    Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vis. 7(1), 11–32 (1991)CrossRefGoogle Scholar
  31. 31.
    Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154 (2004)CrossRefGoogle Scholar
  32. 32.
    Wengert, C., Douze, M., Jégou, H.: Bag-of-colors for improved image search. In: Proceedings of the ACM International Conference on Multimedia (ACM MM), pp. 1437–1440 (2011)Google Scholar
  33. 33.
    Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: SUN database: large-scale scene recognition from abbey to zoo. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3485–3492 (2010)Google Scholar
  34. 34.
    Yamaguchi, K., Kiapour, M.H., Ortiz, L.E., Berg, T.L.: Parsing clothing in fashion photographs. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3570–3577 (2012)Google Scholar
  35. 35.
    Zhang, H., Fritts, J.E., Goldman, S.A.: Image segmentation evaluation: a survey of unsupervised methods. Comput. Vis. Image Underst. 110(2), 260–280 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marco Manfredi
    • 1
  • Costantino Grana
    • 1
    Email author
  • Simone Calderara
    • 1
  • Rita Cucchiara
    • 1
  1. 1.Università degli Studi di Modena e Reggio EmiliaModenaItaly

Personalised recommendations