Advertisement

Machine Vision and Applications

, Volume 25, Issue 5, pp 1211–1225 | Cite as

Background subtraction model based on color and depth cues

  • Enrique J. Fernandez-Sanchez
  • Leonardo Rubio
  • Javier Diaz
  • Eduardo Ros
Special Issue Paper

Abstract

Background subtraction consists of segmenting objects in movement in a video captured by a static camera. This is typically performed using color information, but it leads to wrong estimations due to perspective and illumination issues. We show that multimodal approaches based on the integrated use of color and depth cues produce more accurate and robust results than using either data source independently. Depth is less affected by issues such as shadows or foreground objects similar to background. However, objects close to the background may not be detected when using only range information, being color information complementary in those cases. We propose an extension of a well-known background subtraction technique which fuses range and color information, as well as a post-processing mask fusion stage to get the best of each feature. We have evaluated the method proposed using a well-defined dataset and different disparity estimation algorithms, showing the benefits of our method for fusion color and depth cues.

Keywords

Background subtraction Stereo Disparity Computer vision Video surveillance 

References

  1. 1.
    Appiah, K., Hunter, A.: A single-chip fpga implementation of real-time adaptive background model. In: Proceedings of 2005 IEEE International Conference on Field-Programmable Technology, pp. 95–102 (2005)Google Scholar
  2. 2.
    Bak, A., Bouchafa, S., Aubert, D.: Dynamic objects detection through visual odometry and stereo-vision: a study of inaccuracy and improvement sources. Mach. Vis. Appl., 1–17 (2011). doi: 10.1007/s00138-011-0389-x
  3. 3.
    Barranco, F., Diaz, J., Gibaldi, A., Sabatini, S.P., Ros, E.: Vector disparity sensor with vergence control for active vision systems. Sensors 12(2), 1771–1799 (2012). doi: 10.3390/s120201771, http://www.mdpi.com/1424-8220/12/2/1771
  4. 4.
    Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., Schnorr, C.: Variational optical flow computation in real time. IEEE Trans. Image Process. 14(5), 608–615 (2005). doi: 10.1109/TIP.2005.846018 CrossRefMathSciNetGoogle Scholar
  5. 5.
    Brutzer, S., Hoferlin, B., Heidemann, G.: Evaluation of background subtraction techniques for video surveillance. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1937–1944 (2011)Google Scholar
  6. 6.
    Butler, D.A., Izadi, S., Hilliges, O., Molyneaux, D., Hodges, S., Kim, D.: Shake’n’sense: reducing interference for overlapping structured light depth cameras. In: Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems. ACM, New York CHI ’12, pp. 1933–1936 (2012). doi: 10.1145/2208276.2208335
  7. 7.
    Chiranjeevi, P., Sengupta, S.: Spatially correlated background subtraction, based on adaptive background maintenance. J. Visual Commun. Image Rep. 23(6), 948–957 (2012). doi: 10.1016/j.jvcir.2012.06.004 CrossRefGoogle Scholar
  8. 8.
    Crabb, R., Tracey, C., Puranik, A., Davis, J.: Real-time foreground segmentation via range and color imaging. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008. CVPRW ’08, pp. 1–5 (2008). doi: 10.1109/CVPRW.2008.4563170
  9. 9.
    Farcas, D., Marghes, C., Bouwmans, T.: Background subtraction via incremental maximum margin criterion: a discriminative subspace approach. Mach. Vis. Appl. 23, 1083–1101 (2012). doi: 10.1007/s00138-012-0421-9 CrossRefGoogle Scholar
  10. 10.
    Fernandez-Sanchez, E.J.: http://atcproyectos.ugr.es/mvision/ (2012)
  11. 11.
    Ganapathi, V., Plagemann, C., Koller, D., Thrun, S.: Real time motion capture using a single time-of-flight camera. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 755–762 (2010). doi: 10.1109/CVPR.2010.5540141
  12. 12.
    Gordon, G., Darrell, T., Harville, M., Woodfill, J.: Background estimation and removal based on range and color. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2 vol. (xxiii+637+663) (1999). doi: 10.1109/CVPR.1999.784721
  13. 13.
    Goyette, N., Jodoin, P., Porikli, F., Konrad, J., Ishwar, P.: Changedetection.net: a new change detection benchmark dataset. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1–8 (2012). doi: 10.1109/CVPRW.2012.6238919
  14. 14.
    Heikkila, M., Pietikainen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006). doi: 10.1109/TPAMI.2006.68 CrossRefGoogle Scholar
  15. 15.
    Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 328–341 (2008). doi: 10.1109/TPAMI.2007.1166 CrossRefGoogle Scholar
  16. 16.
    Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background segmentation with feedback: the pixel-based adaptive segmenter. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 38–43 (2012) doi: 10.1109/CVPRW.2012.6238925
  17. 17.
    Huang, D.Y., Chen, C.H., Hu, W.C., Su, S.S.: Reliable moving vehicle detection based on the filtering of swinging tree leaves and raindrops. J. Visual Commun. Image Rep. 23(4), 648–664 (2012). doi: 10.1016/j.jvcir.2012.03.002 CrossRefGoogle Scholar
  18. 18.
    Ivanov, Y., Bobick, A., Liu, J.: Fast lighting independent background subtraction. Int. J. Comput. Vis. 37, 199–207 (2000). doi: 10.1023/A:1008107805263 Google Scholar
  19. 19.
    Javed, O., Shafique, K., Shah, M.: A hierarchical approach to robust background subtraction using color and gradient information. IEEE Workshop on Motion and Video Computing, vol 22 (2002)Google Scholar
  20. 20.
    Karaman, M., Goldmann, L., Yu, D., Sikora, T.: Comparison of static background segmentation methods. In. Proc. SPIE 5960, vol. 5960 (2005)Google Scholar
  21. 21.
    Khan, S., Shah, M.: A multiview approach to tracking people in crowded scenes using a planar homography constraint. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision ECCV 2006, Lecture Notes in Computer Science, vol. 3954, pp. 133–146. Springer, Berlin (2006)CrossRefGoogle Scholar
  22. 22.
    Kim, K., Davis, L.: Multi-camera tracking and segmentation of occluded people on ground plane using search-guided particle filtering. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision ECCV 2006, Lecture Notes in Computer Science, vol. 3953, pp. 98–109. Springer, Berlin (2006)CrossRefGoogle Scholar
  23. 23.
    Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Real-time foregroundbackground segmentation using codebook model. Real Time Imaging 11(3), 172–185 (2005) (special Issue on Video Object Processing)Google Scholar
  24. 24.
    Kim, S., Yun, K., Yi, K., Kim, S., Choi, J.: Detection of moving objects with a moving camera using non-panoramic background model. Mach. Vis. Appl., 1–14 (2012). doi: 10.1007/s00138-012-0448-y
  25. 25.
    Kohonen, T.: Learning vector quantization. Neural Netw. 1, 3–16 (1988)CrossRefGoogle Scholar
  26. 26.
    Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Bi-layer segmentation of binocular stereo video. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 2, pp. 407–414 (2005). doi: 10.1109/CVPR.2005.91
  27. 27.
    Kryjak, T., Komorkiewicz, M., Gorgon, M.: Real-time background generation and foreground object segmentation for high-definition colour video stream in fpga device. J. Real Time Image Process., 1–17 (2012). doi: 10.1007/s11554-012-0290-5
  28. 28.
    Maimone, A., Fuchs, H.: Reducing interference between multiple structured light depth sensors using motion. In: 2012 IEEE Virtual Reality Short Papers and Posters (VRW), pp. 51–54 (2012). doi: 10.1109/VR.2012.6180879
  29. 29.
  30. 30.
    Molina, J., Escudero-Violo, M., Signoriello, A., Pards, M., Ferrn, C., Bescs, J., Marqus, F., Martnez, J.: Real-time user independent hand gesture recognition from time-of-flight camera video using static and dynamic models. Mach. Vis. Appl., 1–18 (2011). doi: 10.1007/s00138-011-0364-6
  31. 31.
    Pauwels, K., Krger, N., Lappe, M., Wrgotter, F., Van Hulle, M.: A cortical architecture on parallel hardware for motion processing in real time. J. Vis. 10(10) (2010). doi: 10.1167/10.10.18
  32. 32.
    Pelletier, S., Cooperstock, J.: Real-time free viewpoint video from a range sensor and color cameras. Mach. Vis. Appl., 1–13 (2012). doi: 10.1007/s00138-012-0428-2
  33. 33.
    Pham, V.Q., Takahashi, K., Naemura, T.: Foreground-background segmentation using iterated distribution matching. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2113–2120 (2011). doi: 10.1109/CVPR.2011.5995356
  34. 34.
    Prati, A., Mikic, I., Trivedi, M.M., Cucchiara, R.: Detecting moving shadows: algorithms and evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 25, 918–923 (2003)CrossRefGoogle Scholar
  35. 35.
    Ralli, J., Diaz, J., Ros, E.: Spatial and temporal constraints in variational correspondence methods. Mach. Vis. Appl., 1–13 (2011). doi: 10.1007/s00138-011-0360-x
  36. 36.
    Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge (1996)MATHGoogle Scholar
  37. 37.
    Rodriguez-Gomez, R., Fernandez-Sanchez, E.J., Diaz, J., Ros, E.: Codebook hardware implementation on fpga for background subtraction. J. Real Time Image Process., 1–15 (2012). doi: 10.1007/s11554-012-0249-6
  38. 38.
    Rodriguez-Gomez, R., Fernandez-Sanchez, E.J., Diaz, J., Ros, E.: Fpga implementation for real-time background subtraction based on horprasert model. Sensors 12(1), 585–611 (2012). http://www.mdpi.com/1424-8220/12/1/585/ Google Scholar
  39. 39.
    Schiller, I., Koch, R.: Improved video segmentation by adaptive combination of depth keying and mixture-of-gaussians. In: Heyden, A., Kahl, F. (eds.) Image Analysis, Lecture Notes in Computer Science, vol. 6688, pp. 59–68. Springer, Berlin (2011)Google Scholar
  40. 40.
    Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp 2 vol. (xxiii+637+663) (1999)Google Scholar
  41. 41.
    Tian, Y., Duan, F., Zhou, M., Wu, Z.: Active contour model combining region and edge information. Mach. Vis. Appl., pp. 1–15 (2011). doi: 10.1007/s00138-011-0363-7
  42. 42.
    Tomasi, M., Vanegas, M., Barranco, F., Diaz, J., Ros, E.: A novel architecture for a massively parallel low level vision processing engine on chip. In: 2010 IEEE International Symposium on Industrial Electronics (ISIE), pp. 3033–3039 (2010). doi: 10.1109/ISIE.2010.5637211
  43. 43.
    Tomasi, M., Vanegas, M., Barranco, F., Diaz, J., Ros, E.: Massive parallel-hardware architecture for multiscale stereo, optical flow and image-structure computation. IEEE Trans Circuits Syst. Video Technol. 22(2), 282–294 (2012). doi: 10.1109/TCSVT.2011.2162260 CrossRefGoogle Scholar
  44. 44.
    Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: Principles and practice of background maintenance. In: IEEE International Conference on Computer Vision, vol. 1. IEEE Computer Society, Los Alamitos, p. 255 (1999)Google Scholar
  45. 45.
    Vincent, L.: Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans. Image Process. 2(2), 176–201 (1993). doi: 10.1109/83.217222 CrossRefGoogle Scholar
  46. 46.
    Xue, K., Liu, Y., Ogunmakin, G., Chen, J., Zhang, J.: Panoramic gaussian mixture model and large-scale range background substraction method for ptz camera-based surveillance systems. Mach. Vis. Appl., 1–16 (2012). doi: 10.1007/s00138-012-0426-4
  47. 47.
    Zhang, B., Zhong, B., Cao, Y.: Complex background modeling based on texture pattern flow with adaptive threshold propagation. J. Visual Commun. Image Rep. 22(6), 516–521 (2011). doi: 10.1016/j.jvcir.2011.05.001 CrossRefGoogle Scholar
  48. 48.
    Zhang, Q., Ngan, K.N.: Multi-view video based multiple objects segmentation using graph cut and spatiotemporal projections. J. Visual Commun. Image Rep. 21(56), 453–461 (2010). doi: 10.1016/j.jvcir.2009.09.005 (special issue on Multi-camera Imaging, Coding and Innovative Display)Google Scholar
  49. 49.
    Zhang, Y., Zhang, X., Maybank, S., Yu, R.: An ir and visible image sequence automatic registration method based on optical flow. Mach. Vis. Appl., 1–12 (2012). doi: 10.1007/s00138-012-0465-x
  50. 50.
    Zhu, J., Liao, M., Yang, R., Pan, Z.: Joint depth and alpha matte optimization via fusion of stereo and time-of-flight sensor. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 453–460 (2009). doi: 10.1109/CVPR.2009.5206520

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Enrique J. Fernandez-Sanchez
    • 1
  • Leonardo Rubio
    • 1
  • Javier Diaz
    • 1
  • Eduardo Ros
    • 1
  1. 1.Department of Computer Architecture and TechnologyCITIC, University of GranadaGranadaSpain

Personalised recommendations