Machine Vision and Applications

, Volume 25, Issue 4, pp 985–995 | Cite as

Image forgery detection using steerable pyramid transform and local binary pattern

  • Ghulam Muhammad
  • Munner H. Al-Hammadi
  • Muhammad Hussain
  • George Bebis
Original Paper


In this paper, a novel image forgery detection method is proposed based on the steerable pyramid transform (SPT) and local binary pattern (LBP). First, given a color image, we transform it in the YCbCr color space and apply the SPT transform on chrominance channels Cb and Cr, yielding a number of multi-scale and multi-oriented subbands. Then, we describe the texture in each SPT subband using LBP histograms. The histograms from each subband are concatenated to produce a feature vector. Finally, a support vector machine uses the feature vector to classify images into forged or authentic. The proposed method has been evaluated on three publicly available image databases. Our experimental results demonstrate the effectiveness of the proposed method and its superiority over some recent other methods.


Image forgery detection Steerable pyramid transform  Local binary pattern Image splicing 


  1. 1.
    Fridrich, J., Soukal, D., Lukas, J.: Detection of copy-move forgery in digital images. In: Proceedings of Digital Forensic Research Workshop (2003)Google Scholar
  2. 2.
    Huang, Y., Lu, W., Sun, W., Long, D.: Improved DCT-based detection of copy-move forgery in images. Forensic Sci. Int. 206(1–3), 178–184 (2011)CrossRefGoogle Scholar
  3. 3.
    Li, G., Wu, Q., Tu, D., Sun, S.: A sorted neighborhood approach for detecting duplicated regions in image forgeries based on DWT and SVD. In: Proceedings of IEEE International Conference on Multimedia and Expo (ICME), Beijing China, pp. 1750–1753 (2007)Google Scholar
  4. 4.
    Muhammad, G., Hussain, M., Bebis, G.: Passive copy move image forgery detection using undecimated dyadic wavelet transform. Digit. Investig. 9(1), 49–57 (2012)Google Scholar
  5. 5.
    Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., Serra, G.: A SIFT-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans. Inf. Forensics Secur. 6(3), 1099–1110 (2011) Google Scholar
  6. 6.
    Ng, T.T., Chang, S.F.: A dataset of authentic and spliced image blocks. Technical Report 203–2004, Columbia University (2004).
  7. 7.
    Dong, J., Wang, W.: CASIA tampered image detection evaluation (TIDE) database, v1.0 and v2.0 (2011).
  8. 8.
    Ng, T.T., Chang, S.F., Sun, Q.: Blind detection of photomontage using higher order statistics. In: Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), pp. 688–691 (2004)Google Scholar
  9. 9.
    Hsu, Y.F., Chang, S.F.: Detecting image splicing using geometry invariants and camera characteristics consistency. In: Proceedings of IEEE International Conference on Multimedia and Expo (ICME), pp. 549–552 (2006)Google Scholar
  10. 10.
    Shi, Y.Q., Chen, C., Chen, W.: A natural image model approach to splicing detection. In: Proceedings of ACM Multimedia and Security (MM &Sec), pp. 51–62 (2007)Google Scholar
  11. 11.
    He, Z., Lu, W., Sun, W., Huang, J.: Digital image splicing detection based on Markov features in DCT and DWT domain. Pattern Recog. 45(12), 4292–4299 (2012)CrossRefGoogle Scholar
  12. 12.
    Wang, W., Dong, J., Tan, T.: Image tampering detection based on stationary distribution of Markov chain. In: Proceedings of IEEE International Conference on Image Processing (ICIP), pp. 2101–2104 (2010)Google Scholar
  13. 13.
    Zhao, X., Li, S., Wang, S., Li, J., Yang, K.: Optimal chroma-like channel design for passive image splicing detection. EURASIP J. Adv. Signal Process. 2012, 240 (2012). doi:10.1186/1687-6180-2012-240 CrossRefGoogle Scholar
  14. 14.
    Unser, M., Chenouard, N., Ville, V.D.: Steerable pyramids and tight wavelet frames in L2 (Rd). IEEE Trans. Image Process. 20(10), 2705–2721 (2011)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Simoncelli, E.P., Freeman, W.T.: The steerable pyramid: a flexible architecture for multi-scale derivative computation. Proc. IEEE Int. Conf. Image Process. (ICIP) III, 444–447 (1995)CrossRefGoogle Scholar
  16. 16.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Machine Intell. 28(12) (2006)Google Scholar
  17. 17.
    Weston, J., Elisseeff, A., Scholkopf, B., Tipping, M.: Use of the zero-norm with linear models and kernel methods. J. Machine Learn. Res. 3, 1439–1461 (2003)MATHMathSciNetGoogle Scholar
  18. 18.
    Sun, Y., Todorovic, S., Goodison, S.: Local learning based feature selection for high dimensional data analysis. IEEE Trans. Pattern Anal. Machine Intell. 32(9), 1610–1626 (2010)CrossRefGoogle Scholar
  19. 19.
    Chang, C.C., Lin, C.J.: LIBSVM—a library for support vector machine (2010).
  20. 20.
    Zhao, X., Li, J., Li, S., Wang, S.: Detecting digital image splicing in chroma spaces. In: Proceedings of International Workshop on Digital Watermarking, pp. 12–22 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ghulam Muhammad
    • 1
  • Munner H. Al-Hammadi
    • 1
  • Muhammad Hussain
    • 2
  • George Bebis
    • 3
  1. 1.College of Computer and Information SciencesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Software EngineeringKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of Computer Science and EngineeringUniversity of Nevada at RenoRenoUSA

Personalised recommendations