Machine Vision and Applications

, Volume 24, Issue 8, pp 1721–1732 | Cite as

Triangular traffic signs detection based on RSLD algorithm

  • Mohammed BoumedieneEmail author
  • Christophe Cudel
  • Michel Basset
  • Abdelaziz Ouamri
Original Paper


This paper describes an efficient method for the detection of triangular traffic signs on grey-scale images. This method is based on the proposed RANSAC symmetric lines detection (RSLD) algorithm which transforms triangle detection into a simple segment detection. A multi-scale approach allows the detection of any warning and yield traffic signs, whatever their distance to the vehicle. This algorithm is applied to a set of selected corners obtained with a coding gradient method. Baseline detection uses the scale of selected triangles to confirm the presence of traffic signs. The study demonstrates that RSLD is a low computation method as compared to standard triangle detection. The performance of the method proposed is compared with recently published methods on road sign databases, which use colour information. An equivalent detection rate is obtained with this algorithm, working on grey-scale images. This algorithm is implemented and runs in real-time at 30 frames per second.


Traffic sign detection Advanced driver assistance systems Computer vision 


  1. 1.
    Alefs, B., Eschemann, G., Ramoser, H., Beleznai, C.: Road sign detection from edge orientation histograms. IEEE Intelligent Vehicles Symposium, Istanbul, pp. 993–998 (2007)Google Scholar
  2. 2.
    Belaroussi, R., Tarel, J.P.: Angle vertex and bisector geometric model for triangular road sign detection. In: Proceedings of IEEE Workshop on Applications of Computer Vision (WACV’09), Snowbird, pp. 577–583 (2009)Google Scholar
  3. 3.
    Belaroussi, R., Tarel, J.P.: Détection des panneaux de signalisation routière par accumulation bivariée. Traitement du signal 27(3), 265–297 (2010)CrossRefGoogle Scholar
  4. 4.
    Bernet, S., Cudel, C., Lefloch, D., Basset, M.: Autocalibration-based partioning relationship and parallax relation for head-mounted eye trackers. Mach. Vis. Appl. 24(2), 393–406 (2013)CrossRefGoogle Scholar
  5. 5.
    Cardarelli, E., Medici, P., Porta, P.P., Ghisio, G.: Road signs shapes detection based on Sobel phase analysis. IEEE Intelligent Vehicles Symposium, Xi’an, pp. 376–381 (2009)Google Scholar
  6. 6.
    Choi, S., Kim, T., Yu, W.: Performance evaluation of RANSAC family. In: Procedings of the British Machine Vision Conference, London, pp. 81.1–81.12 (2009)Google Scholar
  7. 7.
    Cyganek, B.: Real-time detection of the triangular and rectangular shape road signs. In: Proceedings of the 9th International Conference on Advanced Concepts for Intelligent Vision Systems, vol. 467, Delft, pp. 744–755 (2007)Google Scholar
  8. 8.
    Daniel, J., Lauffenburger, J.P.: Conflict management in multi-sensor dempster-shafer fusion for speed limit determination. IEEE Intelligent Vehicles Symposium, Baden-Baden, pp. 987–992 (2011)Google Scholar
  9. 9.
    de la Escalera, A., Armingol, J., Mata, M.: Traffic sign recognition and analysis for intelligent vehicles. Image Vis. Comput. 21(3), 247–258 (2003)CrossRefGoogle Scholar
  10. 10.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)Google Scholar
  11. 11.
    Gao, X.W., Podladchikova, L.N., Shaposhnikov, D.G., Hong, K., Shevtsova, N.: Recognition of traffic signs based on their colour and shape features extracted using human vision models. J. Visual Commun. Image Rep. 17(4), 675–685 (2006)CrossRefGoogle Scholar
  12. 12.
    Garcia-Garrido, M.A., Sotelo, M.A., Martm-Gorostiza, E.: Fast traffic sign detection and recognition under changing lighting conditions. Intelligent Transportation Systems Conference, Canada, pp. 811–816 (2006)Google Scholar
  13. 13.
    Gómez-moreno, H., Maldonado-bascón, S., Gil-jiménez, P., Lafuente-arroyo, S.: Goal evaluation of segmentation algorithms for traffic sign recognition. IEEE Trans. Intell. Transp. Syst. 11(4), 917–930 (2010)CrossRefGoogle Scholar
  14. 14.
    Grigorescu, C., Petkov, N.: Distance sets for shape filters and shape recognition. IEEE Trans. Image Process. 12(10), 1274–1286 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Harris, C., Stephens, M.: A combined corner and edge detector. 4th Alvey Vision Conference, Manchester, pp. 147–152 (1988)Google Scholar
  16. 16.
    Houben, S.: A single target voting scheme for traffic sign detection. IEEE Intelligent Vehicles Symposium, Baden-Baden, pp. 124–129 (2011)Google Scholar
  17. 17.
    Intel, Intel Open Source Computer Vision Library, v2.3 (2011). (Accessed 1 Nov 2011)
  18. 18.
    Itempora, Real Time Multisensor Advanced Prototyping Software, v4.0 (2012). (Accessed 20 March 2012)
  19. 19.
    Landesa-Vzquez, I., Parada-Loira, F., Alba-Castro, J.L.: Fast real-time multiclass traffic sign detection based on novel shape and texture descriptors. 13th International IEEE Conference on Intelligent Transportation Systems, Madeira Island, pp. 1388–1395 (2010)Google Scholar
  20. 20.
    Lin, H., Du, P., Zhao, W., Zhang, L., Sun, H.: Image registration based on corner detection and affine transformation. The 3rd International Congress on Image and Signal Processing, Yantai, pp. 2184–2188 (2010)Google Scholar
  21. 21.
    Liu, Y., Goto, S., Ikenaga, T.: An MRF model based algorithm of triangular shape object detection in color images. Int. J. Inf. Technol. 12(2), 55–65 (2006)zbMATHGoogle Scholar
  22. 22.
    Liu, Y.S., Duh, D.J., Chen, S.Y., Liu, R.S., Hsieh, J.W.: Scale and skew-invariant road sign recognition. Int. J. Imaging Syst. Technol. 17(1), 28–39 (2007)CrossRefGoogle Scholar
  23. 23.
    Loy, G., Barnes, N.: Fast shape-based road sign detection for a driver assistance system. International Conference on Intelligent Robots and Systems, Sendai, pp. 70–75 (2004)Google Scholar
  24. 24.
    Maldonado-bascón, S., Lafuente-arroyo, S., Gil-jiménez, P., Gómez-moreno, H., López-ferreras, F.: Road-sign detection and recognition based on support vector machines. IEEE Trans. Intell. Transp. Syst. 8(2), 264–278 (2007)CrossRefGoogle Scholar
  25. 25.
    Paclka, P., Novovičováa, J., Pudilb, P., Somolb, P.: Road sign classification using the Laplace kernel classifier. Pattern Recognit. Lett. 21(13–14), 1165–1173 (2000)CrossRefGoogle Scholar
  26. 26.
    Parada-loira, F., Alba-castro, J.L.: Local contour patterns for fast traffic sign detection. IEEE Intelligent Vehicles Symposium, San Diego, pp. 1–6 (2010)Google Scholar
  27. 27.
    Piccioli, G., Micheli, E.D., Campani, M.: A robust method for road sign detection and recognition. In: Proceedings of the Third European Conference on Computer Vision, vol. 800, Stocklholm, pp. 493–500 (1994)Google Scholar
  28. 28.
    Stereopolis database (2012). (Accessed 20 Jan 2012)
  29. 29.
    Wang, X.G., Wu, F.C., Wang, Z.H.: Harris feature vector descriptor (HFVD). 19th International Conference on Pattern Recognition, vol. 1, Tampa, pp. 1–4 (2008)Google Scholar
  30. 30.
    Zaklouta, F., Stanciulescu, B.: Warning traffic sign recognition using a HOG-based K-d tree. IEEE Intelligent Vehicles Symposium, Baden-Baden, pp. 1019–1024 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mohammed Boumediene
    • 1
    • 2
    Email author
  • Christophe Cudel
    • 1
  • Michel Basset
    • 1
  • Abdelaziz Ouamri
    • 2
  1. 1.Laboratoire MIPSUniversité de Haute AlsaceMulhouseFrance
  2. 2.Laboratoire Signaux et ImagesUniversité des Sciences et de la Technologie Mohamed BoudiafOranAlgeria

Personalised recommendations