Machine Vision and Applications

, Volume 25, Issue 2, pp 489–500 | Cite as

Structured light self-calibration with vanishing points

  • Radu Orghidan
  • Joaquim Salvi
  • Mihaela Gordan
  • Camelia Florea
  • Joan Batlle
Original Paper


This paper introduces the vanishing points to self-calibrate a structured light system. The vanishing points permit to automatically remove the projector’s keystone effect and then to self-calibrate the projector–camera system. The calibration object is a simple planar surface such as a white paper. Complex patterns and 3D calibrated objects are not required any more. The technique is compared to classic calibration and validated with experimental results.


Vanishing points Self-calibration  Pattern projection Structured light 3D reconstruction 



This paper was supported by the project “Development and support of multidisciplinary postdoctoral programmes in major technical areas of national strategy of Research, Development, Innovation” 4D-POSTDOC, contract no. POSDRU/89/1.5/S/52603, project co-funded by the European Social Fund through Sectoral Operational Programme Human Resources Development 2007–2013.


  1. 1.
    Agin, G.J., Binford, T.O.: Computer description of curved objects. In: International Joint Conferences on, Artificial Intelligence. Stanford, pp. 629–640 (1973)Google Scholar
  2. 2.
    Bosse, M., Rikoski, R., Leonard, J., Teller, S.: Vanishing points and three-dimensional lines from omni-directional video. Vis. Comput. 19, 417–430 (2003)CrossRefGoogle Scholar
  3. 3.
    Bouguet, J.: Camera calibration toolbox for matlab. Cambridge University Press, Cambridge (2004)Google Scholar
  4. 4.
    Caprile, B., Torre, V.: Using vanishing points for camera calibration. Int. J. Comput. Vis. 4, 127–140 (1990)CrossRefGoogle Scholar
  5. 5.
    Chen, X., Davis, J., Slusallek, P.: Wide area camera calibration using virtual calibration object. Proc. CVPR, pp. 2520–2527 (2000)Google Scholar
  6. 6.
    Cipolla, R., Drummond, T., Robertson, D.: Camera calibration from vanishing points in images of architectural scenes. In: BMVC99, pp. 382–391, University of Cambridge, Cambridge (1999)Google Scholar
  7. 7.
    Coughlan, J.M., Yuille, A.L.: Manhattan world: compass direction from a single image by bayesian inference. In: International Conference on Computer Vision (ICCV), pp. 941–947. MIT Press, Cambridge (1999)Google Scholar
  8. 8.
    Falcao, G., Hurtos, N., Massich, J., Fofi, D.: Projector-camera calibration toolbox, Tech. rep., University of Burgundy, Le2i UMR CNRS 6306-IUT Le Creusot (2009). Accessed 12 Mar 2013
  9. 9.
    Fernandez, S., Salvi, J.: Planar-based camera-projector calibration. In: IEEE 7th International Symposium on Image and Signal Processing and Analysis, pp. 633–638. Dubrovnik (2011)Google Scholar
  10. 10.
    Forster, F.: A high-resolution and high accuracy real-time 3d sensor based on structured light. In: Proceeding of 3th International Symposium on 3D Data Processing, Visualization and Transmission, pp. 208–215. Padova, Italy (2006)Google Scholar
  11. 11.
    Furukawa, Y., Ponce, J.: Accurate camera calibration from multi-view stereo and bundle adjustment. Int. J. Comput. Vis. 84, 257–268 (2009)CrossRefGoogle Scholar
  12. 12.
    Guillou, E., Meneveaux, D., Maisel, E., Bouatouch, K.: Using vanishing points for camera calibration and coarse 3D reconstruction from a single image. Vis. Comput. 16, 396–410 (2000)CrossRefMATHGoogle Scholar
  13. 13.
    Hartley, R.I., Kaucic, R.: Sensitivity of calibration to principal point position. In: Proceeding of Seventh European Conference on Computer Vision, pp. 433–446. Springer (2000)Google Scholar
  14. 14.
    Hartley, R.I., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  15. 15.
    Heikkila, J., Silven, O.: A four-step camera calibration procedure with implicit image correction, pp. 1106–1112, CVPR, USA (1997)Google Scholar
  16. 16.
    Hurtos, T., Falcao, G., Massich, J.: Plane-based calibration of a projector camera system. Master’s thesis, VIBOT master, University of Girona, Girona (2008)Google Scholar
  17. 17.
    Kimura, M., Mochimary, M., Kanade, T.: Projector calibration using arbitrary planes and calibrated camera, pp. 1–2. CVPR, USA (2007)Google Scholar
  18. 18.
    Kogecka, J., Zhang, W.: Efficient computation of vanishing points. IEEE Intern. Conf. Robot. Autom. 1, 223–228 (2002)Google Scholar
  19. 19.
    Li, B., Peng, K., Ying, X., Zha, H.: Simultaneous vanishing point detection and camera calibration from single images, pp. 151–160, ISVC’ 10, USA (2010)Google Scholar
  20. 20.
    Martynov, I., Kämäräinen, J.K., Lensu, L.: Projector calibration by “inverse camera calibration”. In: Scandinavian Conference on Image Analysis (SCIA) (2011)Google Scholar
  21. 21.
    Orghidan, R., Salvi, J.: Toolbox for the calibration of a structured light system.\(\sim \)orghidan (2012)Google Scholar
  22. 22.
    Pages, J., Salvi, J.: A new optimised de bruijn coding strategy for structured light patterns. 17th International Conference on Pattern Recognition, vol. 4, pp. 284–287, Spain (2004)Google Scholar
  23. 23.
    Rother, C.: A new approach for vanishing point detection in architectural environments. J. Imag Vis. Comput. 20(9–10), 647–656 (2002)CrossRefGoogle Scholar
  24. 24.
    Salvi, J., Armangué, X., Batlle, J.: A comparative review of camera calibrating methods with accuracy evaluation. Pattern Recognit. 35(7), 1617–1635 (2002)CrossRefMATHGoogle Scholar
  25. 25.
    Salvi, J., Fernandez, S., Pribanic, T., Llado, X.: A state of the art in structured light patterns for surface profilometry. Pattern Recognit. 43(8), 2666–2680 (2010)CrossRefMATHGoogle Scholar
  26. 26.
    Sukthankar, R., Stockton, R.G., Mullin, M.D.: Smarter presentations: Exploiting homography in camera-projector systems. Proc. Intern. Conf. Comput. Vis. 1, 247–253 (2001)Google Scholar
  27. 27.
    Sun, W., Cooperstock, J.: An empirical evaluation of factors influencing camera calibration accuracy using three publicly available techniques. Mach. Vis. Appl. 17(1), 51–67 (2006)CrossRefGoogle Scholar
  28. 28.
    Tardif, J.: Non-iterative approach for fast and accurate vanishing point detection. In: IEEE 12th International Conference on Computer Vision, pp. 1250–1257, Kyoto (2009)Google Scholar
  29. 29.
    Tsai, R.: A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J. Robot Autom. 3(4), 323–344 (1987)CrossRefGoogle Scholar
  30. 30.
    Zhang, L., Curless, B., Seitz, S.M.: Rapid shape acquisition using color structured light and multi-pass dynamic programming. In: Proceedings of the 1st International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT), pp. 24–36. Padova (2001)Google Scholar
  31. 31.
    Zhang, X., Zhu, L.: Projector calibration from the camera image point of view. Opt. Eng. 48, 117–208 (2009)Google Scholar
  32. 32.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Radu Orghidan
    • 1
  • Joaquim Salvi
    • 2
  • Mihaela Gordan
    • 1
  • Camelia Florea
    • 1
  • Joan Batlle
    • 1
  1. 1.Technical University of Cluj-NapocaCluj-NapocaRomania
  2. 2.University of GironaGironaSpain

Personalised recommendations