Machine Vision and Applications

, Volume 24, Issue 6, pp 1295–1310

Pi-Tag: a fast image-space marker design based on projective invariants

  • Filippo Bergamasco
  • Andrea Albarelli
  • Andrea Torsello
Original Paper

Abstract

Visual marker systems have become an ubiquitous tool to supply a reference frame onto otherwise uncontrolled scenes. Throughout the last decades, a wide range of different approaches have emerged, each with different strengths and limitations. Some tags are optimized to reach a high accuracy in the recovered camera pose, others are based on designs that aim to maximizing the detection speed or minimizing the effect of occlusion on the detection process. Most of them, however, employ a two-step procedure where an initial homography estimation is used to translate the marker from the image plane to an orthonormal world, where it is validated and recognized. In this paper, we present a general purpose fiducial marker system that performs both steps directly in image-space. Specifically, by exploiting projective invariants such as collinearity and cross-ratios, we introduce a detection and recognition algorithm that is fast, accurate and moderately robust to occlusion. The overall performance of the system is evaluated in an extensive experimental section, where a comparison with a well-known baseline technique is presented. Additionally, several real-world applications are proposed, ranging from camera calibration to projector-based augmented reality.

Keywords

Fiducial markers Projective invariants Augmented reality Pose estimation Camera calibration 

References

  1. 1.
    Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library, 1st edn. O’Reilly Media, Inc., Cambridge (2008)Google Scholar
  2. 2.
    Cameron, J., Lasenby, J.: Estimating human skeleton parameters and configuration in real-time from markered optical motion capture. In: Conference on Articulated Motion and Deformable Objects (2008)Google Scholar
  3. 3.
    Cho, Y., Lee, J., Neumann, U.: A multi-ring color fiducial system and a rule-based detection method for scalable fiducial-tracking augmented reality. In: Proceedings of International Workshop on Augmented Reality (1998)Google Scholar
  4. 4.
    Claus, D., Fitzgibbon, A.W.: Reliable automatic calibration of a marker-based position tracking system. In: IEEE Workshop on Applications of Computer Vision (2005)Google Scholar
  5. 5.
    Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: real-time single camera slam. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 1052–1067 (2007)CrossRefGoogle Scholar
  6. 6.
    Dorfmller, K.: Robust tracking for augmented reality using retroreflective markers. Comput. Graph. 23(6), 795–800 (1999)CrossRefGoogle Scholar
  7. 7.
    Douxchamps, D., Chihara, K.: High-accuracy and robust localization of large control markers for geometric camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 31, 376–383 (2009)CrossRefGoogle Scholar
  8. 8.
    Fiala, M.: Linear markers for robot navigation with panoramic vision. In: Proceedings of the 1st Canadian Conference on Computer and Robot Vision, CRV ’04, pp. 145–154. IEEE Computer Society, Washington, DC (2004)Google Scholar
  9. 9.
    Fiala, M.: Designing highly reliable fiducial markers. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1317–1324 (2010)Google Scholar
  10. 10.
    Gatrell, L., Hoff, W., Sklair, C.: Robust image features: concentric contrasting circles and their image extraction. In: Proceedings of Cooperative Intelligent Robotics in Space. SPIE, Washington (1991)Google Scholar
  11. 11.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  12. 12.
    Heikkilä, J.: Geometric camera calibration using circular control points. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1066–1077 (October 2000)Google Scholar
  13. 13.
    Huynh, D.Q.: The cross ratio: a revisit to its probability density function. In: Proceedings of the British Machine Vision Conference BMVC 2000 (2000)Google Scholar
  14. 14.
    Jiang, G., Quan, L.: Detection of concentric circles for camera calibration. IEEE Int. Conf. Comput. Vis. 1, 333–340 (2005)Google Scholar
  15. 15.
    Kannala, J., Salo, M.,: Heikkilä, J.: Algorithms for computing a planar homography from conics in correspondence. In: British Machine Vision Conference (2006)Google Scholar
  16. 16.
    Kato, H., Billinghurst, M.: Marker tracking and hmd calibration for a video-based augmented reality conferencing system. In: Proceedings of the 2nd IEEE and ACM International Workshop on Augmented Reality. IEEE Computer Society, Washington, DC (1999)Google Scholar
  17. 17.
    Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics symposium on Geometry processing, SGP ’06, pp. 61–70. Aire-la-Ville, Switzerland (2006)Google Scholar
  18. 18.
    Knyaz, V.A. Head Of Group, Sibiryakov, R.V.: The development of new coded targets for automated point identification and non-contact surface measurements. In: 3D Surface Measurements, International Archives of Photogrammetry and Remote Sensing (1998)Google Scholar
  19. 19.
    Li, Y., Wang, Y.-T., Liu, Y.: Fiducial marker based on projective invariant for augmented reality. J. Comput. Sci. Technol. 22, 890–897 (2007)CrossRefGoogle Scholar
  20. 20.
    Loaiza, M., Raposo, A., Gattass, M.: A novel optical tracking algorithm for point-based projective invariant marker patterns. In: Proceedings of the 3rd International Conference on Advances in Visual Computing, vol. Part I, ISVC’07, pp. 160–169. Springer, Berlin (2007)Google Scholar
  21. 21.
    Maidi, M., Didier, J.-Y., Ababsa, F., Mallem, M.: A performance study for camera pose estimation using visual marker based tracking. Mach. Vis. Appl. 21 (2010)Google Scholar
  22. 22.
    Mallon, J., Whelan, P.F.: Which pattern? biasing aspects of planar calibration patterns and detection methods. Pattern Recogn. Lett. 28(8), 921–930 (2007)CrossRefGoogle Scholar
  23. 23.
    Meer, P., Lenz, R., Ramakrishna, S.: Efficient invariant representations. Int. J. Comput. Vis. 26, 137–152 (1998)CrossRefGoogle Scholar
  24. 24.
    Naimark, L., Foxlin, E.: Circular data matrix fiducial system and robust image processing for a wearable vision-inertial self-tracker. In: Proceedings of the 1st International Symposium on Mixed and Augmented Reality, ISMAR ’02. IEEE Computer Society, Washington, DC (2002)Google Scholar
  25. 25.
    Ouellet, J., Hebert, P.: Precise ellipse estimation without contour point extraction. Mach. Vis. Appl. 21 (2009)Google Scholar
  26. 26.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp algorithm. In: Proceedings of the Third International Conference on 3D Digital Imaging and Modeling, pp. 145–152 (2001)Google Scholar
  27. 27.
    Sauvola, J., Pietikainen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000)CrossRefGoogle Scholar
  28. 28.
    Teixeira, L., Loaiza, M., Raposo, A., Gattass, M.: Augmented reality using projective invariant patterns. In: Advances in Visual Computing. Lecture Notes in Computer Science, vol. 5358. Springer, Berlin (2008)Google Scholar
  29. 29.
    Thormählen, T., Broszio, H.: Automatic line-based estimation of radial lens distortion. Integr. Comput. Aided Eng. 12(2), 177–190 (2005)Google Scholar
  30. 30.
    Tsonisp, V.S., Konstantinos, V.Ch., Trahaniaslj, P.E.: Landmark-based navigation using projective invariants. In: Proceedings of the 1998 IEEE International Conference on Intelligent Robots and Systems. IEEE Computer Society, Victoria, Canada (1998)Google Scholar
  31. 31.
    Uchiyama, H., Saito, H.: Random dot markers. In: Virtual Reality Conference, IEEE, pp. 271–272 (2011)Google Scholar
  32. 32.
    van Rhijn, A., Mulder, J.D.: Optical tracking using line pencil fiducials. In: Proceedings of the Eurographics Symposium on Virtual Environments (2004)Google Scholar
  33. 33.
    Van Liere, R., Mulder, J.D.: Optical tracking using projective invariant marker pattern properties. In: Proceedings of the IEEE Virtual Reality Conference. IEEE Press, New York (2003)Google Scholar
  34. 34.
    Wagner, D., Langlotz, T., Schmalstieg, D.: Robust and unobtrusive marker tracking on mobile phones. In: Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality, ISMAR ’08, pp. 121–124. IEEE Computer Society, Washington, DC (2008)Google Scholar
  35. 35.
    Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., Schmalstieg, D.: Real time detection and tracking for augmented reality on mobile phones. IEEE Trans. Vis. Comput. Graph. 99, 355–368 (2010)Google Scholar
  36. 36.
    Walthelm, A., Kluthe, R.: Active distance measurement based on robust artificial markers as a building block for a service robot architecture. In: IFAC Symposium on Artificial Intelligence in Real Time Control. Budapest Polytechnic, Budapest (2000)Google Scholar
  37. 37.
    Yoon, J.-H., Park, J.-S., Kim, C.: Increasing camera pose estimation accuracy using multiple markers. In: Advances in Artificial Reality and Tele-Existence. Lecture Notes in Computer Science, vol. 4282. pp. 239–248. Springer, Berlin (2006)Google Scholar
  38. 38.
    Yu, Q., Li, Q., Deng, Z.: Online motion capture marker labeling for multiple interacting articulated targets. Comput. Graph. Forum 26(3), 477–483 (2007)CrossRefGoogle Scholar
  39. 39.
    Yu, R., Yang, T., Zheng, J., Zhang, X.: Real-time camera pose estimation based on multiple planar markers. In: Proceedings of the 2009 Fifth International Conference on Image and Graphics ICIG ’09, pp. 640–645. IEEE Computer Society, Washington, DC (2009)Google Scholar
  40. 40.
    Zhang, X., Fronz, S., Navab, N.: Visual marker detection and decoding in ar systems: a comparative study. In: Proceedings of the 1st International Symposium on Mixed and Augmented Reality, ISMAR ’02, pp. 97. IEEE Computer Society, Washington, DC (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Filippo Bergamasco
    • 1
  • Andrea Albarelli
    • 1
  • Andrea Torsello
    • 1
  1. 1.Dipartimento di Scienze Ambientali, Informatica e StatisticaUniversità Ca’ Foscari VeneziaVeniceItaly

Personalised recommendations