Machine Vision and Applications

, Volume 24, Issue 7, pp 1445–1457 | Cite as

Accurate prediction of AD patients using cortical thickness networks

  • Dai Dai
  • Huiguang HeEmail author
  • Joshua T. Vogelstein
  • Zengguang Hou
Special Issue Paper


It is widely believed that human brain is a complicated network and many neurological disorders such as Alzheimer’s disease (AD) are related to abnormal changes of the brain network architecture. In this work, we present a kernel-based method to establish a network for each subject using mean cortical thickness, which we refer to hereafter as the individual’s network. We construct individual networks for 83 subjects, including AD patients and normal controls (NC), which are taken from the Open Access Series of Imaging Studies database. The network edge features are used to make prediction of AD/NC through the sophisticated machine learning technology. As the number of edge features is much more than that of samples, feature selection is applied to avoid the adverse impact of high-dimensional data on the performance of classifier. We use a hybrid feature selection that combines filter and wrapper methods, and compare the performance of six different combinations of them. Finally, support vector machines are trained using the selected features. To obtain an unbiased evaluation of our method, we use a nested cross validation framework to choose the optimal hyper-parameters of classifier and evaluate the generalization of the method. We report the best accuracy of 90.4 % using the proposed method in the leave-one-out analysis, outperforming that using the raw cortical thickness data by more than 10 %.


Classification Alzheimer’s disease Network Cortical thickness 



This work was supported by the National Natural Science Foundation of China (61271151, 61228103, 61175076), and the Sci. & Tech. Aiding the Disabled Program of the Chinese Academy of Sciences (Grant #KGCX2-YW-618). We thank Dr. Hai Jiang for proof-reading.


  1. 1.
    Brookmeyer, R., Johnson, E., Ziegler-Graham, K., Arrighi, H.: Forecasting the global burden of alzheimer’s disease. Alzheimer’s Dement. 3(3), 186–191 (2007)CrossRefGoogle Scholar
  2. 2.
    Petersen, R., Doody, R., Kurz, A., Mohs, R., Morris, J., Rabins, P., Ritchie, K., Rossor, M., Thal, L., Winblad, B.: Current concepts in mild cognitive impairment. Arch. Neurol. 58(12), 1985–1992 (2001)CrossRefGoogle Scholar
  3. 3.
    Grundman, M., Petersen, R., Ferris, S., Thomas, R., Aisen, P., Bennett, D., Foster, N., Galasko, D., Doody, R., et al.: Mild cognitive impairment can be distinguished from alzheimer disease and normal aging for clinical trials. Arch. Neurol. 61(1), 59–66 (2004)CrossRefGoogle Scholar
  4. 4.
    Jack Jr, C., Shiung, M., Weigand, S., OBrien, P., Gunter, J., Boeve, B., Knopman, D., Smith, G., Ivnik, R., Tangalos, E., et al.: Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic mci. Neurology 65(8), 1227–1231 (2005)CrossRefGoogle Scholar
  5. 5.
    de Toledo Morrell, L., Stoub, T., Bulgakova, M., Wilson, R., Bennett, D., Leurgans, S., Wuu, J., Turner, D.: Mri-derived entorhinal volume is a good predictor of conversion from mci to ad. Neurobiol. aging 25(9), 1197–1203 (2004)CrossRefGoogle Scholar
  6. 6.
    Thompson, P., Mega, M., Woods, R., Zoumalan, C., Lindshield, C., Blanton, R., Moussai, J., Holmes, C., Cummings, J., Toga, A.: Cortical change in Alzheimer’s disease detected with a disease-specific population-based brain atlas. Cereb. Cortex 11(1), 1–16 (2001)CrossRefGoogle Scholar
  7. 7.
    Du, A., Schuff, N., Kramer, J., Rosen, H., Gorno-Tempini, M., Rankin, K., Miller, B., Weiner, M.: Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Brain 130(4), 1159–1166 (2007)CrossRefGoogle Scholar
  8. 8.
    Vapnik, V.: The nature of statistical learning theory. Springer Verlag, Berlin (2000)Google Scholar
  9. 9.
    Bishop, C.: Pattern recognition and machine learning. springer, New York (2006)Google Scholar
  10. 10.
    Fan, Y., Shen, D., Gur, R., Gur, R., Davatzikos, C.: Compare: classification of morphological patterns using adaptive regional elements. IEEE Trans. Med. Imaging 26(1), 93–105 (2007)Google Scholar
  11. 11.
    Fan, Y., Batmanghelich, N., Clark, C., Davatzikos, C., et al.: Spatial patterns of brain atrophy in mci patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage 39(4), 1731–1743 (2008)Google Scholar
  12. 12.
    Fan, Y., Resnick, S.M., Wu, X., Davatzikos, C.: Structural and functional biomarkers of prodromal Alzheimer’s disease: a high-dimensional pattern classification study. Neuroimage 41(2), 277–285 (2008)CrossRefGoogle Scholar
  13. 13.
    Vemuri, P., Gunter, J., Senjem, M., Whitwell, J., Kantarci, K., Knopman, D., Boeve, B., Petersen, R., Jack C, Jr.: Alzheimer’s disease diagnosis in individual subjects using structural mr images: validation studies. Neuroimage 39(3), 1186–1197 (2008)Google Scholar
  14. 14.
    Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung, M., Johnson, S.: Spatially augmented lpboosting for ad classification with evaluations on the adni dataset. Neuroimage 48(1), 138–149 (2009)CrossRefGoogle Scholar
  15. 15.
    Gerardin, E., Chételat, G., Chupin, M., Cuingnet, R., Desgranges, B., Kim, H., Niethammer, M., Dubois, B., Lehéricy, S.: Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. Neuroimage 47(4), 1476–1486 (2009)CrossRefGoogle Scholar
  16. 16.
    Magnin, B., Mesrob, L., Kinkingnéhun, S., Pélégrini-Issac, M., Colliot, O., Sarazin, M., Dubois, B., Lehéricy, S., Benali, H.: Support vector machine-based classification of alzheimer’s disease from whole-brain anatomical mri. Neuroradiology 51(2), 73–83 (2009)CrossRefGoogle Scholar
  17. 17.
    Lerch, J., Pruessner, J., Zijdenbos, A., Collins, D., Teipel, S., Hampel, H., Evans, A.: Automated cortical thickness measurements from mri can accurately separate Alzheimer’s patients from normal elderly controls. Neurobiol. Aging 29(1), 23–30 (2008)CrossRefGoogle Scholar
  18. 18.
    Oliveira Jr, P., Nitrini, R., Busatto, G., Buchpiguel, C., Sato, J.: Use of svm methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer’s disease. J. Alzheimer’s Dis. 19(4), 1263–1272 (2010)Google Scholar
  19. 19.
    Querbes, O., Aubry, F., Pariente, J., Lotterie, J., Démonet, J., Duret, V., Puel, M., Berry, I., Fort, J., Celsis, P., et al.: Early diagnosis of alzheimer’s disease using cortical thickness: impact of cognitive reserve. Brain 132(8), 2036–2047 (2009)CrossRefGoogle Scholar
  20. 20.
    Wang, Y., Fan, Y., Bhatt, P., Davatzikos, C.: High-dimensional pattern regression using machine learning: From medical images to continuous clinical variables. NeuroImage 50(4), 1519–1535 (2010)CrossRefGoogle Scholar
  21. 21.
    Hinrichs, C., Singh, V., Xu, G., Johnson, S., et al.: Predictive markers for ad in a multi-modality framework: An analysis of mci progression in the adni population. Neuroimage 55(2), 574–589 (2011)Google Scholar
  22. 22.
    Bassett, D., Bullmore, E.: Small-world brain networks. The Neuroscientist 12(6), 512–523 (2006)Google Scholar
  23. 23.
    Sporns, O., Tononi, G., Kötter, R.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1(4), e42 (2005)CrossRefGoogle Scholar
  24. 24.
    Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3), 1059–1069 (2010)CrossRefGoogle Scholar
  25. 25.
    He, Y., Chen, Z., Evans, A.: Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. J. Neurosci. 28(18), 4756–4766 (2008)CrossRefGoogle Scholar
  26. 26.
    Yao, Z., Zhang, Y., Lin, L., Zhou, Y., Xu, C., Jiang, T.: Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease. PLoS Comput. Biol. 6(11), e1001,0066 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    He, Y., Chen, Z., Evans, A.: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex 17(10), 2407–2419 (2007)CrossRefGoogle Scholar
  28. 28.
    Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., Yu, C., Liu, H., Liu, Z., Jiang, T.: Disrupted small-world networks in schizophrenia. Brain 131(4), 945–961 (2008)CrossRefGoogle Scholar
  29. 29.
    He, Y., Dagher, A., Chen, Z., Charil, A., Zijdenbos, A., Worsley, K., Evans, A.: Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain 132(12), 3366–3379 (2009)CrossRefGoogle Scholar
  30. 30.
    Raj, A., Mueller, S., Young, K., Laxer, K., Weiner, M.: Network-level analysis of cortical thickness of the epileptic brain. Neuroimage 52(4), 1302–1313 (2010)CrossRefGoogle Scholar
  31. 31.
    Wee, C., Yap, P., Li, W., Denny, K., Browndyke, J., Potter, G., Welsh-Bohmer, K., Wang, L., Shen, D.: Enriched white matter connectivity networks for accurate identification of MCI patients. NeuroImage 54(3), 1812–1822 (2011)CrossRefGoogle Scholar
  32. 32.
    Li, Y., Wang, Y., Wu, G., Shi, F., Zhou, L., Lin, W., Shen, D.: Discriminant analysis of longitudinal cortical thickness changes in Alzheimer’s disease using dynamic and network features. Neurobiol. Aging 33(2), 427.e15–427.e30 (2012)CrossRefGoogle Scholar
  33. 33.
    Zhou, L., Wang, Y., Li, Y., Yap, P.T., Shen, D.: Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures. PloSone 6(7), e21935 (2011)CrossRefGoogle Scholar
  34. 34.
    Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. learn. 46(1), 389–422 (2002)CrossRefzbMATHGoogle Scholar
  35. 35.
    Sled, J., Zijdenbos, A., Evans, A.: A nonparametric method for automatic correction of intensity nonuniformity in mri data. IEEE Trans. Med. Imaging 17(1), 87–97 (1998)CrossRefGoogle Scholar
  36. 36.
    Collins, D., Neelin, P., Peters, T., Evans, A.: Automatic 3d intersubject registration of mr volumetric data in standardized talairach space. J. comput. Assist. tomogr. 18(2), 192–205 (1994)CrossRefGoogle Scholar
  37. 37.
    Zijdenbos, A., Forghani, R., Evans, A.: Automatic quantification of ms lesions in 3d mri brain data sets: validation of insect. In: Medical Image Computing and Computer-Assisted Interventation MICCAI98, pp. 439–448, 1998Google Scholar
  38. 38.
    Kim, J., Singh, V., Lee, J., Lerch, J., Ad-Dab’bagh, Y., MacDonald, D., Lee, J., Kim, S., Evans, A.: Automated 3-d extraction and evaluation of the inner and outer cortical surfaces using a laplacian map and partial volume effect classification. Neuroimage 27(1), 210–221 (2005)CrossRefGoogle Scholar
  39. 39.
    Chung, M.K., Worsley, K.J., Robbins, S., Paus, T., Taylor, J., Giedd, J.N., Rapoport, J.L., Evans, A.C.: Deformation-based surface morphometry applied to gray matter deformation. Neuroimage 18(2), 198–213 (2003)Google Scholar
  40. 40.
    Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. Neuroimage 15(1), 273–289 (2002)CrossRefGoogle Scholar
  41. 41.
    Kohavi, R., John, G.: Wrappers for feature subset selection. Artif. intell. 97(1–2), 273–324 (1997)CrossRefzbMATHGoogle Scholar
  42. 42.
    Sun, Y., Todorovic, S., Goodison, S.: Local-learning-based feature selection for high-dimensional data analysis. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1610–1626 (2010)CrossRefGoogle Scholar
  43. 43.
    Wilson, S., Ogar, J., Laluz, V., Growdon, M., Jang, J., Glenn, S., Miller, B., Weiner, M., Gorno-Tempini, M.: Automated mri-based classification of primary progressive aphasia variants. Neuroimage 47(4), 1558–1567 (2009)Google Scholar
  44. 44.
    Prati, R., Batista, G., Monard, M.: A survey on graphical methods for classification predictive performance evaluation. IEEE Trans. Knowl. Data Eng. 23, 1601–1618 (2011)Google Scholar
  45. 45.
    Chetelat, G., Landeau, B., Eustache, F., Mezenge, F., Viader, F., de La Sayette, V., Desgranges, B., Baron, J.: Using voxel-based morphometry to map the structural changes associated with rapid conversion in mci: a longitudinal mri study. Neuroimage 27(4), 934–946 (2005)CrossRefGoogle Scholar
  46. 46.
    Karas, G., Scheltens, P., Rombouts, S., Visser, P., Van Schijndel, R., Fox, N., Barkhof, F.: Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease. Neuroimage 23(2), 708–716 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dai Dai
    • 1
  • Huiguang He
    • 1
    Email author
  • Joshua T. Vogelstein
    • 2
  • Zengguang Hou
    • 1
  1. 1.Institute of AutomationChinese Academy of SciencesBeijingChina
  2. 2.Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations