Advertisement

Machine Vision and Applications

, Volume 24, Issue 3, pp 513–520 | Cite as

Camera calibration with enclosing ellipses by an extended application of generalized eigenvalue decomposition

  • Shen Cai
  • Zijian Zhao
  • Longxiang Huang
  • Yuncai Liu
Original Paper

Abstract

Conics-based calibration has been widely inves- tigated in the past several years. The primary method is to utilize the generalized eigenvalue decomposition (GED) of conics. In this paper, we extend the GED method to deal with a general case: two enclosing ellipses. We construct a link between enclosing ellipses and confocal conics. The homography is, thus, decomposed to three components, each of which corresponds to a clear geometrical meaning. Other general conics cases including separate case, intersecting case and hyperbolas case are also discussed. Experiments with simulated and real data demonstrate the good performance of our camera calibration algorithms.

Keywords

Camera calibration Generalized eigenvalue decomposition (GED) Homography Enclosing ellipses Confocal conics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1344 (2000)CrossRefGoogle Scholar
  2. 2.
    Sturm, P., Maybank, S.: On plane-based camera calibration: A general algorithm, singularities, applications. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (1999)Google Scholar
  3. 3.
    Hartley R., Zisserman A.: Multiple View Geometry in Computer Vision, 2 edn. Cambridge University Press, Cambridge (2003)Google Scholar
  4. 4.
    Chen, Q., Wu, H., Wada, T.: Camera calibration with two arbitrary coplanar circles. In: Proceedings of European Conference on Computer Vision (ECCV). IEEE (2004)Google Scholar
  5. 5.
    Wu, Y., Zhu, H., Hu, Z., Wu, F.: Camera calibration from the quasi-affine invariance of two parallel circles. In: Proceedings of European Conference on Computer Vision (ECCV). IEEE (2004)Google Scholar
  6. 6.
    Ying, X., Zha, H.: Camera calibration using principal-axes aligned conics. In: Proceedings of Asian Conference on Computer Vision (ACCV). IEEE (2007)Google Scholar
  7. 7.
    Gurdjos, P., Kim, J.S., Kweon, I.S.: Euclidean structure from confocal conics: Theory and application to camera calibration. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2006)Google Scholar
  8. 8.
    Gurdjos, P., Sturm, P., Wu, Y.: Euclidean structure from n ≥ 2 parallel circles: Theory and algorithms. In: Proceedings of European Conference on Computer Vision (ECCV). IEEE (2006)Google Scholar
  9. 9.
    Jiang, G., Quan, L.: Detection of concentric circles for camera calibration. In: Proceedings of International Conference on Computer Vision (ICCV). IEEE (2005)Google Scholar
  10. 10.
    Kim J.S., Gurdjos P., Kweon I.S.: Geometric and algebraic constraints of projected concentric circles and their applications to camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 637–642 (2005)CrossRefGoogle Scholar
  11. 11.
    Zheng Y., Liu Y.: Camera calibration using one perspective view of two arbitrary coplanar circles. Opt. Eng. 47(6), 067203 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rothwell C., Zisserman A., Marinos C., Forsyth D., Mundy J.: Relative motion and pose from arbitrary plane curves. Image Vis. Comput. 10(4), 250–262 (1992)CrossRefGoogle Scholar
  13. 13.
    Semple J., Kneebone. G.: Algebraic Projective Geometry. Oxford Clarendon Press, New York (1952)zbMATHGoogle Scholar
  14. 14.
    Mundy J.L., Zisserman A.: Geometric Invariance in Computer Vision. MIT Press, USA (1992)Google Scholar
  15. 15.
    Forsyth D., Mundy J., Zisserman A., Coelho C., Heller A., Rothwell C.: Invariant descriptors for 3-d object recognition and pose. IEEE Trans. Pattern Anal. Mach. Intell. 13(10), 971–991 (1991)CrossRefGoogle Scholar
  16. 16.
    Fitzgibbon A.W., Pilu M., Fisher R.B.: Direct least-spuares fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Shen Cai
    • 1
  • Zijian Zhao
    • 2
  • Longxiang Huang
    • 1
  • Yuncai Liu
    • 1
  1. 1.Institute of Image Processing and Pattern RecognitionShanghai Jiao Tong UniversityShanghaiChina
  2. 2.School of Control Science and EngineeringShandong UniversityJinanChina

Personalised recommendations