Machine Vision and Applications

, Volume 24, Issue 3, pp 551–565

Defect detection in periodic patterns using a multi-band-pass filter

Open Access
Original Paper


This study presents a rapid and reliable technique for the inspection of defects in a two-dimensional periodic image using a multi-band-pass filter. More importantly, the blurring effect of the resultant defect images is significantly reduced, thereby resulting in a more precise estimation of the size of defects when compared with methods that use low-pass filtering. As a filter-based approach, the present technique does not require an alignment procedure. In addition, computational time is reduced by implementing multi-band-pass filters with convolution masks when the filters are operated in the spatial domain. Further, this approach involves mostly addition operations with very few multiplications; hence, computational time is significantly reduced when compared with those for existing approaches. The efficiency and effectiveness of the proposed multi-band-pass filter is verified through examples. It is observed that there is a significant reduction in blurring effects, leakage effects, and computational effort. It is noteworthy that though the proposed approach is presented as a two-dimensional filtering problem, it can be reduced to a one-dimensional filtering problem under the assumption that the misorientation angle of the inspected periodic pattern is negligibly small.


Automatic optical inspection Computer vision Defect detection Multi-band-pass filter Periodic pattern 


  1. 1.
    Meisburger W.D., Brodie A.D., Desai A.A.: Low-voltage electronic-optical system for the high-speed inspection of integrated circuits. J. Vac. Sci. Technol. Ser. B 10, 2804–2808 (1992)CrossRefGoogle Scholar
  2. 2.
    Shankar N.G., Zhong Z.W.: A rule-based computing pproach for the segmentation of semiconductor defects. Microelectron. J. 37, 500–509 (2006)CrossRefGoogle Scholar
  3. 3.
    Shankar N.G., Zhong Z.W.: Defect detection on semiconductor wafer surfaces. Microelectron. Eng. 77, 337–346 (2005)CrossRefGoogle Scholar
  4. 4.
    Khalaj B.H., Aghajan H., Paulraj A., Kailath T.: Automated direct patterned wafer inspection. Proc. SPIE 1907, 140–147 (1993)CrossRefGoogle Scholar
  5. 5.
    Khalaj B.H., Aghajan H.K., Kailath T.: Digital image processing techniques for patterned wafer inspection. Proc. SPIE 1926, 508–516 (1993)CrossRefGoogle Scholar
  6. 6.
    Khalaj B.H., Aghajan H., Paulraj A., Kailath T.: Defect inspection of periodic patterns with low-order distortions. Proc. SPIE 2183, 13–19 (1994)CrossRefGoogle Scholar
  7. 7.
    Khalaj B.H., Aghajan H.K., Kailath T.: Patterned wafer inspection by high resolution spectral estimation techniques. Mach. Vis. Appl. 7, 178–185 (1994)CrossRefGoogle Scholar
  8. 8.
    Xie P., Guan S.U.: A golden-template self-generating method for patterned wafer inspection. Mach. Vis. Appl. 12, 149–156 (2000)CrossRefGoogle Scholar
  9. 9.
    Guan S.U., Xie P., Li H.: A golden-block-based self-refining scheme for repetitive patterned wafer inspections. Mach. Vis. Appl. 13, 314–321 (2003)CrossRefGoogle Scholar
  10. 10.
    Tsai D.M., Chuang S.T.: 1D-based defect detection in patterned TFT-LCD panels using characteristic fractal dimension and correlations. Mach. Vis. Appl. 20, 423–434 (2009)CrossRefGoogle Scholar
  11. 11.
    Tsai D.M., Lai S.C.: Defect detection in periodically patterned surfaces using independent component analysis. Pattern Recogn. 41, 2812–2832 (2008)MATHCrossRefGoogle Scholar
  12. 12.
    Lu C.J., Tsai D.M.: Defect inspection of patterned thin film transistor-liquid crystal display panels using a fast sub-image-based singular value decomposition. Int. J. Prod. Res. 42, 4331–4351 (2004)MATHCrossRefGoogle Scholar
  13. 13.
    Bourgeat P., Meriaudeau F., Tobin K.W., Gorria P.: Content based segmentation of patterned wafers. J. Electron. Imaging 13, 428–435 (2004)CrossRefGoogle Scholar
  14. 14.
    Song Y.C., Choi D.H., Park K.H.: Multiscale detection of defect in thin film transistor liquid crystal display panel. Jpn. J. Appl. Phys. 43, 5465–5468 (2004)CrossRefGoogle Scholar
  15. 15.
    Liu Y.H., Lin S.H., Hsueh Y.L., Lee M.J.: Automatic target defect identification for TFT-LCD array process inspection using kernel FCM-based fuzzy SVDD ensemble. Expert Syst. Appl. 36, 1978–1998 (2009)CrossRefGoogle Scholar
  16. 16.
    Chen W.C., Hsu S.W.: A neural-network approach for an automatic LED inspection system. Expert Syst. Appl. 33, 531–537 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lin H.D.: Automated defect inspection of light-emitting diode chips using neural network and statistical approaches. Expert Syst. Appl. 36, 219–226 (2009)CrossRefGoogle Scholar
  18. 18.
    Liu Y.H., Huang Y.K., Lee M.J.: Automatic inline defect detection for a thin film transistor-liquid crystal display array process using locally linear embedding and support vector data description. Meas. Sci. Technol. 19, 1–16 (2008)Google Scholar
  19. 19.
    Lin C.T., Chang C.L., Cheng W.C.: A recurrent fuzzy cellular neural network system with automatic structure and template learning. IEEE Trans. Circ. Syst.—I: Regular Papers 51, 1024–1035 (2004)CrossRefGoogle Scholar
  20. 20.
    Chang C.L., Fan K.W., Lin C.T., Cheng W.C.: A recurrent fuzzy coupled cellular neural network system with automatic structure and template learning. IEEE Trans. Circ. Syst.—I: Express Briefs 53, 1024–1035 (2006)Google Scholar
  21. 21.
    Tsai D.M., Wu S.K.: Automated surface inspection using Gabor filters. Int. J. Adv. Manuf. Technol. 16, 474–482 (2000)CrossRefGoogle Scholar
  22. 22.
    Kumar A., Pang G.K.H.: Defect detection in textured materials using Gabor filters. IEEE Trans. Ind. Appl. 38, 425–440 (2002)CrossRefGoogle Scholar
  23. 23.
    Bodnarova A., Bennamoun M., Latham S.: Optimal Gabor filters for textile flaw detection. Pattern Recogn. 35, 2973–2991 (2002)MATHCrossRefGoogle Scholar
  24. 24.
    Bourgeat P., Meriaudeau F., Tobin K.W., Gorria P.: Comparison of texture features for segmentation of patterned wafers. Proc. SPIE 5266, 179–190 (2004)CrossRefGoogle Scholar
  25. 25.
    Tsai D.M., Chiang C.H.: Automatic band selection for wavelet reconstruction in the application of defect detection. Image Vis. Comput. 21, 413–431 (2003)CrossRefGoogle Scholar
  26. 26.
    Ngan H.Y.T., Pang G.K.H., Yung S.P., Ng M.K.: Wavelet based methods on patterned fabric defect detection. Pattern Recogn. 38, 559–576 (2005)CrossRefGoogle Scholar
  27. 27.
    Latif-Ameta A., Ertuzuna A., Ercil A.: Efficient method for texture defect detection: sub-band domain co-occurrence matrices. Image Vis. Comput. 18, 543–553 (2000)CrossRefGoogle Scholar
  28. 28.
    Chan C.H., Pang G.K.H.: Fabric defect detection by Fourier analysis. IEEE Trans. Ind. Appl. 36, 1267–1276 (2000)CrossRefGoogle Scholar
  29. 29.
    Tsai D.M., Chuang S.T., Tseng Y.H.: One-dimensional-based automatic defect inspection of multiple patterned TFT-LCD panels using Fourier image reconstruction. Int. J. Prod. Res. 45, 1297–1321 (2007)MATHCrossRefGoogle Scholar
  30. 30.
    Tsai D.M., Hung C.Y.: Automatic defect inspection of patterned thin film transistor-liquid crystal display (TFT-LCD) panels using one-dimensional Fourier reconstruction and wavelet decomposition. Int. J. Prod. Res. 43, 4589–4607 (2005)CrossRefGoogle Scholar
  31. 31.
    Tseng, Y.H.: Automatic surface inspection for TFT-LCD array panels using Fourier reconstruction. MS thesis, Dept. Ind. Engg., Yuan-Ze Univ., Taiwan (2002)Google Scholar
  32. 32.
    Wood E.J.: Applying Fourier and associated transforms to pattern characterization in textiles. Textile Res. J. 60, 212–220 (1990)CrossRefGoogle Scholar
  33. 33.
    Ravandi S.A.H., Toriumi K.: Fourier transform analysis of plain weave fabric appearance. Textile Res. J. 65, 676–683 (1995)CrossRefGoogle Scholar
  34. 34.
    Xie X.: A review of recent advances in surface defect detection using texture analysis techniques. Electron. Lett. Comput. Vis. Image Anal. 7, 1–22 (2008)Google Scholar
  35. 35.
    Weng, Y.S., Perng, M.H.: Periodic pattern inspection using convolution masks. MVA2007 IAPR Conference on Machine Vision Applications, Tokyo, Japan, pp. 544–547 (May 16–18, 2007)Google Scholar
  36. 36.
    Proakis J.G., Manolakis D.G.: Digital Signal Processing. Prentice Hall, India (1996)Google Scholar
  37. 37.
    Oppenheim A.V., Schafer R.W.: Discrete-Time Signal Processing 2nd edn. Prentice Hall, (1999)Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.The Department of Power Mechanical EngineeringNational Tsing Hua UniversityHsinchuTaiwan, ROC
  2. 2.The National Synchrotron Radiation Research CenterHsinchuTaiwan, ROC

Personalised recommendations