Advertisement

Machine Vision and Applications

, Volume 23, Issue 6, pp 1219–1227 | Cite as

Real-time stereo matching based on fast belief propagation

  • Xueqin Xiang
  • Mingmin Zhang
  • Guangxia Li
  • Yuyong He
  • Zhigeng PanEmail author
Original Paper

Abstract

In this paper, a global optimum stereo matching algorithm based on improved belief propagation is presented which is demonstrated to generate high quality results while maintaining real-time performance. These results are achieved using a foundation based on the hierarchical belief propagation architecture combined with a novel asymmetric occlusion handling model, as well as parallel graphical processing. Compared to the other real-time methods, the experimental results on Middlebury data show the efficiency of our approach.

Keywords

Stereo matching Hierarchical belief propagation Occlusion handling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

ESM 1 (WMV 11350 kb)

References

  1. 1.
    Scharstein D., Szeliski R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV 47(1–3), 7–42 (2002)zbMATHCrossRefGoogle Scholar
  2. 2.
    Sun J., Zheng N.N., Shum H.Y.: Stereo matching using belief propagation. IEEE Trans. PAMI. 25(7), 787–800 (2003)CrossRefGoogle Scholar
  3. 3.
    Boykov Y., Veksler O., Zabih R.: Fast approximate energy minimization via graph cuts. IEEE Trans. PAMI. 23(11), 1227–1239 (2001)CrossRefGoogle Scholar
  4. 4.
    Felzenszwalb P.F., Huttenlocher D.P.: Efficient belief propagation for early vision. IJCV 71(1), 41–54 (2006)CrossRefGoogle Scholar
  5. 5.
    Yang, Q., Wang, L., Yang, R., Wang, S., Liao, M., Nistér, D.: Real-time global stereo matching using hierarchical belief propagation. In: Proceedings of BMVC (2006)Google Scholar
  6. 6.
    Sun, J., Zheng, N.-N., Shum, H.-Y.: Symmetric stereo matching for occlusion handling. In: Proceedings of CVPR, vol. II, pp. 399–406 (2005)Google Scholar
  7. 7.
    Yang Q., Wang L., Yang R., Stewénius H., Nistér D.: Stereo Matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling. IEEE Trans. PAMI. 31(3), 492–504 (2009)CrossRefGoogle Scholar
  8. 8.
    Veksler, O.: Fast variable window for stereo correspondence using integral image. In: Proceedings of CVPR, vol. 1, pp. 556–561 (2003)Google Scholar
  9. 9.
    Gong M., Yang R., Wang L., Gong M.: A performance study on different cost aggregation approaches used in real-time stereo matching. IJCV 75(2), 283–296 (2007)CrossRefGoogle Scholar
  10. 10.
    Criminisi A., Blake A., Rother C.: Efficient dense stereo with occlusions for new view-synthesis by four-state dynamic programming. IJCV 71(1), 89–110 (2007)CrossRefGoogle Scholar
  11. 11.
    Szeliski R., Zabih R., Scharstein D., Veksler O., Kolmogorov V., Agarwala A., Tappen M.F., Rother C.: A comparative study of energy minimization methods for Markov random fields. IEEE Trans. PAMI. 30(6), 1068–1080 (2008)CrossRefGoogle Scholar
  12. 12.
    Tappen, M.F., Freeman, W.T.: Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters. In Proceedings of ICCV, vol. II, pp. 900–906 (2003)Google Scholar
  13. 13.
    Yu, T., Lin, R.-S., Super, B., Tang, B.: Efficient message representations for belief propagation. In: Proceedings of ICCV (2007)Google Scholar
  14. 14.
    Liang, C.-K., Cheng, C.-C., Lai, Y.-C., Chen, L.-G., Chen, H.: Hardware Efficient Belief Propagation. In: Proceedings of CVPR 80–87 (2009)Google Scholar
  15. 15.
    Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusion using graph cuts. In Proceedings of ICCV, vol. II, pp. 508–515 (2001)Google Scholar
  16. 16.
    Ishikawa, H., Geiger. D.: Occlusions, discontinuities, and epipolar lines in stereo. In: Proceedings of ECCV, pp. 232–248 (1998)Google Scholar
  17. 17.
    Bobick A.F., Intille S.S.: Large occlusion stereo. IJCV 33(3), 181–200 (1999)CrossRefGoogle Scholar
  18. 18.
    Yoon K.-J., Kweon I.-S.: Locally adaptive support-weight approach for visual correspondence search. IEEE Trans. PAMI. 28(4), 650–656 (2006)CrossRefGoogle Scholar
  19. 19.
    Birchfield S., Tomasi C.: A pixel dissimilarity measure that is insensitive to image Sampling. IEEE Trans. PAMI. 20(4), 401–406 (1998)CrossRefGoogle Scholar
  20. 20.
    Bishop C.: Pattern Recognition and Machine Learning. Springer, New York (2006)zbMATHGoogle Scholar
  21. 21.
    Tseng, Y.-C., Chang, N., Chang, T.-S.: Low memory cost block-based belief propagation for stereo correspondence. In Proceedings of ICME, pp. 1415–1418 (2007)Google Scholar
  22. 22.
    Kraus, M., Strengert, M.: Pyramid filters based on bilinear interpolation. In: Proceedings of GRAPP 2007, vol. GM/R, pp. 21–28 (2007)Google Scholar
  23. 23.
    Min D., Sohn K.: Cost aggregation and occlusion handling with WLS in stereo matching. IEEE Trans. Image Process. 17(8), 1431–1442 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Scharstein, D., Szeliski, R.: Middlebury stereo vision research page (2010). http://vision.midd-lebury.edu-/stereo
  25. 25.
    Gupta, R., Cho, S.-Y.: Real-time stereo matching using adaptive binary window. In: Proceedings of 3DPVT (2010)Google Scholar
  26. 26.
    Zhang, K., Lu, J., Lafruit, G., Lauwereins, R., Van Gool, L.: Real-time accurate stereo with bitwise fast voting on CUDA. In: Proceedings of ICCVW, pp. 794–800 (2009)Google Scholar
  27. 27.
    Tombari, F., Mattoccia, S., Di Stefano, L., Addimanda, E.: Near real-time stereo based on effective cost aggregation. In Proceedings of ICPR, pp. 1–4 (2008)Google Scholar
  28. 28.
    Kosov, S., Thormählen, T., Seidel, H.-P.: Accurate real-time disparity estimation with variational methods. In: Proceedings of ISVC, pp. 796–807 (2009)Google Scholar
  29. 29.
    Wang, L., Liao, M., Gong, M., Yang, R., Nistér, D.: High-quality real-time stereo using adaptive cost aggregation and dynamic programming. In: Proceedings of 3DPVT, pp. 798–805 (2006)Google Scholar
  30. 30.
    Gong M., Yang, Y.-H.: Near real-time reliable stereo matching using programmable graphics hardware. In: Proceedings of CVPR, pp. 924–931 (2005)Google Scholar
  31. 31.
    Grauer-Gray, S., Kambhamettu, C.: Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. In Proceedings of WACV, pp. 1–8 (2009)Google Scholar
  32. 32.
    Trinh, H., McAllester. D.: Unsupervised learning of stereo vision with monocular cues. In: Proceedings of BMVC (2009)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Xueqin Xiang
    • 1
  • Mingmin Zhang
    • 1
  • Guangxia Li
    • 1
  • Yuyong He
    • 1
  • Zhigeng Pan
    • 2
    Email author
  1. 1.State Key Lab of Computer Aided Design and Computer GraphicsHangzhouChina
  2. 2.Digital Media and HCI Research CenterHangzhou Normal UniversityHangzhouChina

Personalised recommendations