Advertisement

Machine Vision and Applications

, Volume 25, Issue 3, pp 727–745 | Cite as

Recent progress in road and lane detection: a survey

  • Aharon Bar Hillel
  • Ronen Lerner
  • Dan Levi
  • Guy Raz
Special Issue Paper

Abstract

The problem of road or lane perception is a crucial enabler for advanced driver assistance systems. As such, it has been an active field of research for the past two decades with considerable progress made in the past few years. The problem was confronted under various scenarios, with different task definitions, leading to usage of diverse sensing modalities and approaches. In this paper we survey the approaches and the algorithmic techniques devised for the various modalities over the last 5 years. We present a generic break down of the problem into its functional building blocks and elaborate the wide range of proposed methods within this scheme. For each functional block, we describe the possible implementations suggested and analyze their underlying assumptions. While impressive advancements were demonstrated at limited scenarios, inspection into the needs of next generation systems reveals significant gaps. We identify these gaps and suggest research directions that may bridge them.

Keywords

Lane detection Road detection Road segmentation Advanced driver assistance systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thorpe C., Hebert M., Kanade T., Shafer S.: Toward autonomous driving: the CMU Navlab. Part I: perception. IEEE Expert 6, 31–42 (1991)CrossRefGoogle Scholar
  2. 2.
    Huang A.S., Moore D., Antone M., Olson E., Teller S.: Finding multiple lanes in urban road networks with vision and LIDAR. Auton. Robots 26, 103–122 (2009)CrossRefGoogle Scholar
  3. 3.
    McCall J., Trivedi M.: Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation. IEEE Trans. Intell. Transp. Syst. 7, 20–37 (2006)CrossRefGoogle Scholar
  4. 4.
    Labayrade R., Douret J., Laneurit J., Chapuis R.: A reliable and robust lane detection system based on the parallel use of three algorithms for driving safety assistance. IEICE Trans. Inf. Syst. E 89D, 2092–2100 (2006)CrossRefGoogle Scholar
  5. 5.
    Cheng H., Jeng B., Tseng P., Fan K.: Lane detection with moving vehicles in the traffic scenes. IEEE Trans. Intell. Transp. Syst. 7, 571–582 (2006)CrossRefGoogle Scholar
  6. 6.
    Wu S., Chiang H., Perng J., Chen C., Wu B., Lee T.: The heterogeneous systems integration design and implementation for lane keeping on a vehicle. IEEE Trans. Intell. Transp. Syst. 9, 246–263 (2008)CrossRefGoogle Scholar
  7. 7.
    Samadzadegan, F., Sarafraz, A., Tabibi, M.: Automatic lane detection in image sequences for vision based navigation purposes. In: ISPRS Image Engineering and Vision Metrology (2006)Google Scholar
  8. 8.
    Danescu R., Nedevschi S.: Probabilistic lane tracking in difficult road scenarios using stereovision. IEEE Trans. Intell. Transp. Syst. 10, 272–282 (2009)CrossRefGoogle Scholar
  9. 9.
    Jiang, R., Klette, R., Vaudrey, T., Wang, S.: New lane model and distance transform for lane detection and tracking. In: Computer Analysis of Images and Patterns, pp. 1044–1052 (2009)Google Scholar
  10. 10.
    Borkar, A., Hayes, M., Smith, M.: Robust lane detection and tracking with RANSAC and Kalman filter. In: International Conference on Image Processing, pp. 3261–3264 (2009)Google Scholar
  11. 11.
    Shi, X., Kong, B., Zheng, F.: A new lane detection method based on feature pattern. In: International Congress on Image and Signal Processing, pp. 1–5 (2009)Google Scholar
  12. 12.
    Pomerleau, D.: RALPH: Rapidly adapting lateral position handler. In: IEEE Intelligent Vehicles Symposium (1995)Google Scholar
  13. 13.
    Zhou T., Xu R., Hu X.F., Ye Q.T.: A lane departure warning system based on virtual lane boundary. J. Inf. Sci. Eng. 24, 293–305 (2008)Google Scholar
  14. 14.
    Burzio, G., et al.: Investigating the impact of a lane departure warning system in real driving conditions: a subjectivefield operational test. In: European Conference on Human Centred Design for Intelligent Transport Systems (2010)Google Scholar
  15. 15.
    Barickman, F.S., Smith, L., Jones, R.: Lane departure warning system research and test development. In: NHTSA Paper number 07-0495Google Scholar
  16. 16.
    Batavia, P.H.: Driver-adaptive lane departure warning systems. CMU-RI-TR-99-25 (1999)Google Scholar
  17. 17.
    Hofmann U., Rieder A., Dickmanns E.: Radar and vision data fusion for hybrid adaptive cruise control on highways. Mach. Vis. Appl. 14(1), 42–49 (2003)CrossRefGoogle Scholar
  18. 18.
    Gao, T., Aghajan, H.: Self lane assignment using egocentric smart mobile camera for intelligent GPS navigation. In: Workshop on Egocentric Vision, pp. 57–62 (2009)Google Scholar
  19. 19.
    Jiang, Y., Gao, F., Xu, G.: Computer vision-based multiple-lane detection on straight road and in a curve. In: Image Analysis and Signal Processing, pp. 114–117 (2010)Google Scholar
  20. 20.
    Lipski, C., Scholz, B., Berger, K., Linz, C., Stich, T., Magnor, M.: A fast and robust approach to lane marking detection and lane tracking. In: Southwest Symposium on Image Analysis and Interpretation, pp. 57–60 (2008)Google Scholar
  21. 21.
    Kornhauser, A.L., et al.: DARPA Urban Challenge Princeton University Technical Paper (2007). http://www.stanford.edu/~jmayer/papers/darpa07.pdf
  22. 22.
    Urmson C. et al.: Autonomous driving in urban environments: boss and the urban challenge. J. Field Robot. 25(8), 425–466 (2008)CrossRefGoogle Scholar
  23. 23.
    Bacha A. et al.: Odin: team victor Tango entry in the DARPA urban challenge. J. Field Robot. 25(8), 467–492 (2008)CrossRefGoogle Scholar
  24. 24.
    Montemerlo M. et al.: Junior: the Stanford entry in the urban challenge. J. Field Robot. 25(8), 569–597 (2008)Google Scholar
  25. 25.
    Rasmussen, C., Korah, T.: On-vehicle and aerial texture analysis for vision-based desert road following. In: CVPR Workshop on Machine Vision for Intelligent Vehicles, vol. III, p. 66 (2005)Google Scholar
  26. 26.
    Kong, H., Audibert, J., Ponce, J.: Vanishing point detection for road detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 96–103 (2009)Google Scholar
  27. 27.
    Broggi A., Cattani S.: An agent based evolutionary approach to path detection for off-road vehicle guidance. Pattern Recognit. Lett. 27, 1164–1173 (2006)CrossRefGoogle Scholar
  28. 28.
    Alon, Y., Ferencz, A., Shashua, A.: Off-road path following using region classification and geometric projection constraints. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. I, pp. 689–696 (2006)Google Scholar
  29. 29.
    Nefian, A., Bradski, G.: Detection of drivable corridors for off-road autonomous navigation. In: International Conference on Image Processing, pp. 3025–3028 (2006)Google Scholar
  30. 30.
    Katramados, I., Crumpler, S., Breckon, T.: Real-time traversable surface detection by colour space fusion and temporal analysis. In: Computer Vision Systems, pp. 265–274 (2009)Google Scholar
  31. 31.
    Borkar, A., Hayes, M., Smith, M., Pankanti, S.: A layered approach to robust lane detection at night. In: IEEE Workshop on Computational Intelligence in Vehicles and Vehicular Systems, pp. 51–57 (2009)Google Scholar
  32. 32.
    Kammel, S., Pitzer, B.: LIDAR-based lane marker detection and mapping. In: IEEE Intelligent Vehicles Symposium, pp. 1137–1142 (2008)Google Scholar
  33. 33.
    US Department of Transportation, Federal Highway Administration, O.o.I.M.: Highway statistics (2005)Google Scholar
  34. 34.
    von Reyher, A., Joos, A., Winner, H.: A LIDAR-based approach for near range lane detection. In: IEEE Intelligent Vehicles Symposium, pp. 147–152 (2005)Google Scholar
  35. 35.
    Ogawa, T., Takagi, K.: Lane recognition using on-vehicle LIDAR. In: IEEE Intelligent Vehicles Symposium, pp. 540–545 (2006)Google Scholar
  36. 36.
    Takagi, K., Morikawa, K., Ogawa, T., Saburi, M.: Road environment recognition using on-vehicle LIDAR. In: IEEE Intelligent Vehicles Symposium, pp. 120–125 (2006)Google Scholar
  37. 37.
    Hernandez, J., Marcotegui, B.: Filtering of artifacts and pavement segmentation from mobile LIDAR data. In: Laser09, p. 329 (2009)Google Scholar
  38. 38.
    Cremean, L.B., Murray, R.: Model-based estimation of off-highway road geometry using single-axis LADAR and inertial sensing. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1661–1666 (2006)Google Scholar
  39. 39.
    Pradeep, V., Medioni, G., Weiland, J.: Piecewise planar modeling for step detection using stereo vision. In: Computer Vision Applications for the Visually Impaired (2008)Google Scholar
  40. 40.
    Sach, L., Atsuta, K., Hamamoto, K., Kondo, S.: A robust road profile estimation method for low texture stereo images. In: International Conference on Image Processing, pp. 4273–4276 (2009)Google Scholar
  41. 41.
    Michael W., Aaron E., Loren K.: Consumer-grade global positioning system (GPS) accuracy and reliability. J. Forestry 103, 169–173 (2005)Google Scholar
  42. 42.
    Caron, F., Duflos, E., Pomorski, D., Vanheeghe, P.: GPS/IMU data fusion using multisensor Kalman filtering: introduction of contextual aspects. Information Fusion, pp. 221–230 (2004)Google Scholar
  43. 43.
    Yi, Y.: On improving the accuarcy and reliability of GPS/INS based direct sensor georeferencing. Ph.D. dissertation, Ohio State University, Columbus (2007)Google Scholar
  44. 44.
    Ma, B., Lakshmanan, S., Hero, A.O., I.: Simultaneous detection of lane and pavement boundaries using model-based multisensor fusion. IEEE Trans. Intell. Transp. Syst. 01, 135–147 (2000)Google Scholar
  45. 45.
    Kaliyaperumal K., Lakshmanan S., Kluge K.: An algorithm for detecting roads and obstacles in radar images. IEEE Trans. Vehicular Technol. 50, 170–182 (2001)CrossRefGoogle Scholar
  46. 46.
    Yamaguchi, K., Watanabe, A., Naito, T., Ninomiya, Y.: Road region estimation using a sequence of monocular images. In: International Conference on Pattern Recognition, pp. 1–4 (2008)Google Scholar
  47. 47.
    Zhang, G., Zheng, N., Cui, C., Yan, Y., Yuan, Z.: An efficient road detection method in noisy urban environment. In: IEEE Intelligent Vehicles Symposium (2009)Google Scholar
  48. 48.
  49. 49.
    Alvarez, J., Lopez, A., Baldrich, R.: Shadow resistant road segmentation from a mobile monocular system. In: Iberian Conference on Pattern Recognition and Image Analysis, II, 9–16 (2007)Google Scholar
  50. 50.
    Sawano H., Okada M.: A road extraction method by an active contour model with inertia and differential features. IEICE Trans. Inf. Syst. E 89D, 2257–2267 (2006)CrossRefGoogle Scholar
  51. 51.
    Nieto, M., Salgado, L., Jaureguizar, F., Arrospide, J.: Robust multiple lane road modeling based on perspective analysis. In: International Conference on Image Processing, pp. 2396–2399 (2008)Google Scholar
  52. 52.
    Wang Y., Teoh E., Shen D.: Lane detection and tracking using b-snake. Image Vis. Comput. 22, 269–280 (2004)CrossRefGoogle Scholar
  53. 53.
    Kim Z.: Robust lane detection and tracking in challenging scenarios. IEEE Trans. Intell. Transp. Syst. 9, 16–26 (2008)CrossRefGoogle Scholar
  54. 54.
    Fischler M.A., Bolles R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  55. 55.
    Tarel, J.P., Ieng, S.S., Charbonnier, P.: Using robust estimation algorithms for tracking explicit curves. In: ECCV ’02: Proceedings of the 7th European Conference on Computer Vision-Part I, pp. 492–507. Springer, London (2002)Google Scholar
  56. 56.
    Duda R.O., Hart P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15, 11–15 (1972)CrossRefGoogle Scholar
  57. 57.
    Liang F., Troung Y., Wong W.: Automatic Bayesian model averaging for linear regression and applications in Bayesian curve fitting. Stat. Sin. 11, 1005–1029 (2001)MATHGoogle Scholar
  58. 58.
    Rissanen, J.: An introduction to the MDL principle (2008). http://www.mdl-research.org/jorma.rissanen/pub/Intro.pdf
  59. 59.
    Kohler M., Krzyzak A., Schäfer D.: Application of structural risk minimization to multivariate smoothing spline regression estimates. Bernoulli, 8(4), 475–489 (2002)MATHMathSciNetGoogle Scholar
  60. 60.
    Dean T., Kanazawa K.: A model for reasoning about persistence and causation. Comput. Intell. 5, 142–150 (1989)CrossRefGoogle Scholar
  61. 61.
    Claeskens G., Hjort N.L.: Model Selection and Model Averaging. Cambridge University Press, Cambridge (2008)CrossRefMATHGoogle Scholar
  62. 62.
    Lopez, A., Serrat, J., Canero, C., Lumbreras, F.: Robust lane lines detection and quantitative assessment. In: Iberian Conference on Pattern Recognition and Image Analysis, vol. I, pp. 274–281 (2007)Google Scholar
  63. 63.
    Dollàr, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: a benchmark. In: CVPR (2009)Google Scholar
  64. 64.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893. ACM, New York (2005)Google Scholar
  65. 65.
    Fei-Fei L., Fergus R., Perona P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28, 594–611 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Aharon Bar Hillel
    • 1
  • Ronen Lerner
    • 1
  • Dan Levi
    • 1
  • Guy Raz
    • 1
  1. 1.Advanced Technical Center Israel, General Motors R&DHerzliyaIsrael

Personalised recommendations