Machine Vision and Applications

, Volume 24, Issue 1, pp 145–157 | Cite as

Three-dimensional human shape inference from silhouettes: reconstruction and validation

  • Jonathan Boisvert
  • Chang Shu
  • Stefanie Wuhrer
  • Pengcheng Xi
Original Paper


Silhouettes are robust image features that provide considerable evidence about the three-dimensional (3D) shape of a human body. The information they provide is, however, incomplete and prior knowledge has to be integrated to reconstruction algorithms in order to obtain realistic body models. This paper presents a method that integrates both geometric and statistical priors to reconstruct the shape of a subject assuming a standardized posture from a frontal and a lateral silhouette. The method is comprised of three successive steps. First, a non-linear function that connects the silhouette appearances and the body shapes is learnt and used to create a first approximation. Then, the body shape is deformed globally along the principal directions of the population (obtained by performing principal component analysis over 359 subjects) to follow the contours of the silhouettes. Finally, the body shape is deformed locally to ensure it fits the input silhouettes as well as possible. Experimental results showed a mean absolute 3D error of 8 mm with ideal silhouettes extraction. Furthermore, experiments on body measurements (circumferences or distances between two points on the body) resulted in a mean error of 11 mm.


Human models Statistical prior Shape-from-silhouettes Three-dimensional reconstruction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal A., Triggs B.: Recovering 3d human pose from monocular images. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 44–58 (2006)CrossRefGoogle Scholar
  2. 2.
    Allen, B., Curless, B., Popovic, Z.: Exploring the space of human body shapes: data-driven synthesis under anthropometric control. In: Digital Human Modeling for Design and Engineering Conference. SAE International (2004)Google Scholar
  3. 3.
    Anguelov D., Srinivasan P., Koller D., Thrun S., Rodgers J., Davis J.: SCAPE: shape completion and animation of people. ACM Trans. Graph. 24(3), 416 (2005)CrossRefGoogle Scholar
  4. 4.
    Arya, S., Mount, D.M.: Approximate nearest neighbor queries in fixed dimensions. In: Symposium on Discrete algorithms, pp. 271–280 (1993)Google Scholar
  5. 5.
    Balan, A., Sigal, L., Black, M., Davis, J., Haussecker, H.: Detailed human shape and pose from images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar
  6. 6.
    Chen, Y., Cipolla, R.: Learning shape priors for single view reconstruction. In: IEEE International Workshop on 3-D Digital Imaging and Modeling (3DIM’09), pp. 1425–1432 (2009)Google Scholar
  7. 7.
    Cheung, K.-M., Baker, S., Kanade, T.: Shape-from-silhouette of articulated objects and its use for human body kinematics estimation and motion capture. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 77–84 (2003)Google Scholar
  8. 8.
    Cheung K.-M., Baker S., Kanade T.: Shape-from-silhouette across time part i: theory and algorithms. Int. J. Comput. Vis. 62(3), 221–247 (2005)CrossRefGoogle Scholar
  9. 9.
    Cheung K.-M., Baker S., Kanade T.: Shape-from-silhouette across time part ii: applications to human modeling and markerless motion tracking. Int. J. Comput. Vis. 63(3), 225–245 (2005)CrossRefGoogle Scholar
  10. 10.
    Delamarre Q., Faugeras O.: 3D articulated models and multi-view tracking with silhouettes. Int. J. Comput. Vis. 2, 716–721 (1999)Google Scholar
  11. 11.
    Ek, C., Torr, P., Lawrence, N.: Gaussian process latent variable models for human pose estimation. In: Machine Learning for Multimodal Interaction, pp. 132–143 (2007)Google Scholar
  12. 12.
    Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: European Conference on Computer Vision, pp. 751–767 (2000)Google Scholar
  13. 13.
    Gond, L., Sayd, P., Chateau, T., Dhome, M.: A regression-based approach to recover human pose from voxel data. In: International Conference on Computer Vision Workshops, pp. 1012–1019 (2009)Google Scholar
  14. 14.
    Gordon, C.C., Churchill, T., Clauser, C.E., Bradtmiller, B., McConville, J.T., Tebbetts, I., Walker, R.A.: 1988 anthropometric survey of u.s. army personnel: Methods and summary statistics. Technical Report NATICK/TR-89/044, US Army Natick Research, Development, and Engineering Center (1989)Google Scholar
  15. 15.
    Hasler, N., Ackermann, H., Rosenhahn, B., Thormählen, T., Seidel, H.-P.: Multilinear pose and body shape estimation of dressed subjects from image sets. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1823–1830 (2010)Google Scholar
  16. 16.
    Horprasert, T., Harwood, D., Davis, L.: A statistical approach for real time robust background subtraction and shadow detection. In: International Conference on Computer Vision—Frame Rate Workshop (1999)Google Scholar
  17. 17.
    Kakadiaris I., Metaxas D.: Three-dimensional human body model acquisition from multiple views. Int. J. Comput. Vis. 30(3), 191–218 (1998)CrossRefGoogle Scholar
  18. 18.
    Kimmel R., Sethian J.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA 95(15), 8431 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kutulakos K., Seitz S.: A theory of shape by space carving. Int. J. Comput. Vis. 38(3), 199–218 (2000)zbMATHCrossRefGoogle Scholar
  20. 20.
    Laurentini A.: The visual hull concept for silhouette-based image understanding. IEEE Trans. Pattern Anal. Mach. Intell. 16, 150–162 (1994)CrossRefGoogle Scholar
  21. 21.
    Li L., Huang W., Gu I., Tian Q.: Statistical modeling of complex backgrounds for foreground object detection. IEEE Trans. Image Process. 13(11), 1459 (2004)CrossRefGoogle Scholar
  22. 22.
    Liu D.C., Nocedal J.: On the limited memory method for large scale optimization. Math Program. 45, 503–528 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Mikić I., Trivedi M., Hunter E., Cosman P.: Human body model acquisition and tracking using voxel data. Int. J. Comput. Vis. 53(3), 199–223 (2003)CrossRefGoogle Scholar
  24. 24.
    Robinette, K., Daanen, H.: The caesar project: a 3-d surface anthropometry survey. In: 3D Digital Imaging and Modeling, pp. 380–386 (1999)Google Scholar
  25. 25.
    Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. In: ACM Transactions on Graphics (TOG), vol. 23, no. 3, pp 309–314. ACM (2004)Google Scholar
  26. 26.
    Scharstein D., Szeliski R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002)zbMATHCrossRefGoogle Scholar
  27. 27.
    Seo, H., Yeo, Y., Wohn, K.: 3D Body reconstruction from photos based on range scan. Technologies for E-Learning and Digital Entertainment, pp. 849–860 (2006)Google Scholar
  28. 28.
    Shon, A.P., Grochow, K., Hertzmann, A., Rao, R.P.N.: Learning shared latent structure for image synthesis and robotic imitation. In: Neural Information Processing Systems (2005)Google Scholar
  29. 29.
    Shreiner, D., Woo, M., Neider, J., Davis, T.: OpenGL(R) Programming Guide: The Official Guide to Learning OpenGL(R), Version 2 (5th Edition). Addison-Wesley Professional, Reading (2005)Google Scholar
  30. 30.
    Sigal, L., Balan, A., Black, M.: Combined discriminative and generative articulated pose and non-rigid shape estimation. In: Advances in Neural Information Processing Systems (2007)Google Scholar
  31. 31.
    Tsai Y.-P., Ko C.-H., Hung Y.-P., Shih Z.-C.: Background removal of multiview images by learning shape priors. IEEE Trans. Image Process. 16(10), 2607–2616 (2007)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Xi, P., Lee, W.-S., Shu, C.: Analysis of segmented human body scans. In: Graphical Interface, pp. 19–26 (2007)Google Scholar
  33. 33.
    Xi, P., Lee, W.-S., Shu, C.: A data-driven approach to human-body cloning using a segmented body database. Pacific Conference on Computer Graphics and Applications, pp. 139–147 (2007)Google Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2011

Authors and Affiliations

  • Jonathan Boisvert
    • 1
  • Chang Shu
    • 1
  • Stefanie Wuhrer
    • 1
  • Pengcheng Xi
    • 1
  1. 1.National Research Council CanadaInstitute for Information TechnologyOttawaCanada

Personalised recommendations