Machine Vision and Applications

, Volume 23, Issue 1, pp 79–89 | Cite as

Methods for geometrical video projector calibration

  • Jamil Draréni
  • Sébastien Roy
  • Peter Sturm
Original Paper


In this paper we present two methods to geometrically calibrate a video projector using a markerless planar surface. The first method assumes a partial knowledge on the camera parameters, whereas the second method consists in an auto-calibration method with no assumption on the parameters of the camera. Instead, the auto-calibration is performed by identifying a roughly fronto-parallel pose of the camera w.r.t. the projection surface. The fact that camera calibration is not needed increases the usability of the methods and at the same time eliminates one potential source of inaccuracy, since errors in the camera calibration would otherwise inevitably propagate through the projector calibration. Not using a printed pattern as most existing methods do is another gain in accuracy and ease of use. As depicted by our experiments, both methods enjoy a good stability and give good results when compared against existing methods.


Video projector calibration Planar calibration Auto-calibration Focal estimation Structured light Photometric stereo 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

138_2011_322_MOESM1_ESM.bst (32 kb)
ESM 1 (bst 33 kb)
138_2011_322_MOESM2_ESM.bst (29 kb)
ESM 2 (bst 30 kb)
138_2011_322_MOESM3_ESM.clo (3 kb)
ESM 3 (clo 4 kb)
138_2011_322_MOESM4_ESM.cls (47 kb)
ESM 4 (cls 47 kb)
138_2011_322_MOESM5_ESM.bib (11 kb)
ESM 5 (bib 11 kb)
138_2011_322_MOESM6_ESM.bbl (6 kb)
ESM 6 (bbl 7 kb)


  1. 1.
    Audet, S., Okutomi, M.: A user-friendly method to geometrically calibrate projector-camera systems. In: Proceedings of the IEEE International Workshop on Projector-Camera Systems. Miami Beach, USA (2009)Google Scholar
  2. 2.
    Barsky, S., Petrou, M.: The 4-source photometric stereo technique for three-dimensional surfaces in the presence of highlights and shadows. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 25(10), 1239–1252 (2003).
  3. 3.
    Draréni, J., Sturm, P., Roy, S.: Projector calibration using a markerless plane. In: Proceedings of the International Conference on Computer Vision Theory and Applications, Lisbon, Portugal, vol. 2, pp. 377–382 (2009).
  4. 4.
    Gurdjos, P., Sturm, P.: Methods and geometry for plane-based self-calibration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 491–496. IEEE (2003). Madison, Wisconsin
  5. 5.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004) (ISBN: 0521540518)zbMATHCrossRefGoogle Scholar
  6. 6.
    Horn, B.K.P.: Robot vision (MIT Electrical Engineering and Computer Science), MIT Press ed edn. The MIT Press, Cambridge (1986)Google Scholar
  7. 7.
    Kimura, M., Mochimaru, M., Kanade, T.: Projector calibration using arbitrary planes and calibrated camera. In: Computer Vision and Pattern Recognition, IEEE Computer Society Conference on 0, 1–2 (2007).
  8. 8.
    Knuth, D.E.: Art of Computer Programming, vol. 2: Seminumerical Algorithms (3rd edn). Addison-Wesley Professional, Reading (1997)Google Scholar
  9. 9.
    Lee, J.C., Dietz, P.H., Maynes-Aminzade, D., Raskar, R., Hudson, S.E.: Automatic projector calibration with embedded light sensors. In: Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology, pp. 123–126. ACM (2004)Google Scholar
  10. 10.
    Lourakis, M., Argyros, A.: The design and implementation of a generic sparse bundle adjustment software package based on the levenberg-marquardt algorithm. Tech. Rep. 340, Institute of Computer Science - FORTH, Heraklion, Crete, Greece (2004). Available from
  11. 11.
    Malis E., Cipolla R.: (2002) Camera self-calibration from unknown planar structures enforcing the multi-view constraints between collineations. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 4(9)Google Scholar
  12. 12.
    Marsaglia G.: Choosing a point from the surface of a sphere. Ann. Math. Stat. 43, 645–646 (1972)zbMATHCrossRefGoogle Scholar
  13. 13.
    Min-Zhi Shao, N.B.: Spherical sampling by Archimedes’ theorem. Technical Report 184, University of Pennsylvania (1996)Google Scholar
  14. 14.
    Muller M.E.: A note on a method for generating points uniformly on n-dimensional spheres. Commun. Ass. Comput. Mach. 2, 19–20 (1959)zbMATHGoogle Scholar
  15. 15.
    Okatani, T., Deguchi, K.: Autocalibration of a projector-camera system. In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 27(12), 1845–1855 (2005). doi: 10.1109/TPAMI.2005.235
  16. 16.
    Ouellet, J.N., Rochette, F., Hébert, P.: Geometric calibration of a structured light system using circular control points. In: 3D Data Processing, Visualization and Transmission, pp. 183–190 (2008)Google Scholar
  17. 17.
    Raij, A., Pollefeys, M.: Auto-calibration of multi-projector display walls. vol. 1, pp. 14–17 (2004). doi: 10.1109/ICPR.2004.1333994
  18. 18.
    Sadlo, F., Weyrich, T., Peikert, R., Gross, M.: A practical structured light acquisition system for point-based geometry and texture. In: Proceedings of the Eurographics Symposium on Point-Based Graphics, pp. 89–98 (2005)Google Scholar
  19. 19.
    Salvi J., Pagés J., Batlle J.: Pattern codification strategies in structured light systems. Pattern Recognit. 37(4), 827–849 (2004)zbMATHCrossRefGoogle Scholar
  20. 20.
    Shen T., Meng C.: Digital projector calibration for 3-d active vision systems. J. Manuf. Sci. Eng. 124(1), 126–134 (2002)CrossRefGoogle Scholar
  21. 21.
    Sturm, P., Maybank, S.: On plane-based camera calibration: A general algorithm, singularities, applications. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, USA, pp. 432–437 (1999).
  22. 22.
    Tao, J.: Slide projector calibration based on calibration of digital camera. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol. 6788 (2007). doi: 10.1117/12.774689
  23. 23.
    Triggs, B.: Autocalibration from planar scenes. In: Proceedings of the 5th European Conference on Computer Vision, Freiburg, Germany (1998)Google Scholar
  24. 24.
    Woodham, R.J.: Photometric stereo: A reflectance map technique for determining surface orientation from a single view. In: Proceedings of the 22nd SPIE Annual Technical Symposium, vol. 155, pp. 136–143. San Diego, California, USA (1978)Google Scholar
  25. 25.
    Yershova, A., LaValle, S.M.: Deterministic sampling methods for spheres and so(3).In: ICRA, pp. 3974–3980 (2004)Google Scholar
  26. 26.
    Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on 1, vol. 1, pp. 666–673 (1999)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.DIROUniversité de MontréalMontrealCanada
  2. 2.INRIA Rhône-AlpesSt. IsmierFrance

Personalised recommendations