Machine Vision and Applications

, Volume 22, Issue 6, pp 1027–1045 | Cite as

Complementary texture and intensity gradient estimation and fusion for watershed segmentation

Original Paper

Abstract

In this paper, we identify two current challenges associated with watershed segmentation algorithms which attempt to fuse the visual cues of texture and intensity. The first challenge is that most existing techniques use a competing gradient set which does not allow boundaries to be defined in terms of both visual cues. The second challenge is that these techniques fail to account for the spatial uncertainty inherent in texture gradients. We present a watershed segmentation algorithm which provides a suitable solution to both these challenges and minimises the spatial uncertainty in boundary localisation. This is achieved by a novel fusion algorithm which uses morphological dilation to integrate intensity and texture gradients. A quantitative and qualitative evaluation of results is provided demonstrating that our algorithm outperforms three existing watershed algorithms.

Keywords

Feature fusion Spatial uncertainty Texture Watershed segmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blaschke, T.: Object-based contextual image classification built on image segmentation. In: IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, Washington DC, USA, pp. 113–119 (2003)Google Scholar
  2. 2.
    Hofmann T., Puzicha J., Buhmann J.M.: Unsupervised texture segmentation in a deterministic annealing framework. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 803–818 (1998)CrossRefGoogle Scholar
  3. 3.
    Zhang Y.-J.: An overview of image and video segmentation in the last 40 years. In: Zhang, Y.-J. (eds) Advances in Image and Video Segmentation., pp. 1–15. IRM Press, Pennsylvania (2006)CrossRefGoogle Scholar
  4. 4.
    Roth, V., Ommer, B.: Exploiting low-level image segmentation for object recognition. Lecture Notes in Computer Science, vol 4174, pp. 11–20. Springer, Heidelberg (2006)Google Scholar
  5. 5.
    Agarwal S., Awan A., Roth D.: Learning to detect objects in images via a sparse, part-based representation. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1475–1490 (2004)CrossRefGoogle Scholar
  6. 6.
    Soille P.: Morphological image analysis: principles and applications. Springer, Berlin (2002)Google Scholar
  7. 7.
    Martin D.R., Fowlkes C.C., Malik J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004)CrossRefGoogle Scholar
  8. 8.
    Chaji N., Ghassemian H.: Texture-gradient-based contour detection. European Association for Signal Processing (EURASIP) J Appl. Signal Process. 2006, 1–8 (2006)Google Scholar
  9. 9.
    O’Callaghan R.J., Bull D.R.: Combined morphological-spectral unsupervised image segmentation. IEEE Trans. Image Process. 14(1), 49–62 (2005)CrossRefGoogle Scholar
  10. 10.
    Malik J., Belongie S., Leung T., Shi J.: Contour and texture analysis for image segmentation. Int. J. Comput. Vis. 43(1), 7–27 (2001)CrossRefMATHGoogle Scholar
  11. 11.
    Petrou M., Sevilla P.G.: Image processing: dealing with texture. Wiley, London (2006)CrossRefGoogle Scholar
  12. 12.
    Perona P., Malik J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  13. 13.
    Black, M., Sapiro, G.: Edges as outliers: anisotropic smoothing using local image statistics. In: International Conference on Scale-space Theories in Computer Vision, Corfu, Greece, pp. 259–270 (1999)Google Scholar
  14. 14.
    Deng H., Liu J.: Development of anisotropic diffusion to segment texture images. J. Electron. Imag. 12(2), 307–316 (2003)CrossRefGoogle Scholar
  15. 15.
    Corcoran, P., Winstanley, A.: Watershed segmentation using a multiscale ramp edge merging strategy. In: Proceedings of International Conference on Machine Vision and Image Processing, NUI Maynooth, Ireland, pp. 158–168 (2007)Google Scholar
  16. 16.
    Clausi D.A., Jernigan M.E.: Designing Gabor filters for optimal texture separability. Pattern Recognit. 33(11), 1835–1849 (2000)CrossRefGoogle Scholar
  17. 17.
    DeVeaux R., Velleman P.F., Bock D.E.: Stats: Data and Models. Addison Wesley, Reading (2004)Google Scholar
  18. 18.
    Shao, J., Forstner, W.: Gabor wavelets for texture edge extraction. In: ISPRS Commission III Symposium on Spatial Information from Digital Photogrammetry and Computer Vision, Munich, pp. 745–752 (1994)Google Scholar
  19. 19.
    Kruizinga P., Petkov N.: Nonlinear operator for oriented texture. IEEE Trans. Image Process. 8(10), 1395–1407 (1999)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Jobanputra R., Clausi D.A.: Preserving boundaries for image texture segmentation using grey level co-occurring probabilities. Pattern Recognit. 39(2), 234–245 (2006)CrossRefMATHGoogle Scholar
  21. 21.
    Chen J., Pappas T.N., Mojsilovic A., Rogowitz B.E.: Adaptive perceptual color-texture image segmentation. IEEE Trans. Image Process. 14(10), 1524–1536 (2005)CrossRefGoogle Scholar
  22. 22.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its applications to evaluating segmentation algorithms and measuring ecological statistics. In: International Conference on Computer Vision, Vancouver, Canada, pp. 416–423 (2001)Google Scholar
  23. 23.
    Unnikrishnan R., Pantofaru C., Hebert M.: Toward objective evaluation of image segmentation algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 929–944 (2007)CrossRefGoogle Scholar
  24. 24.
    Zhang Y.: Optimization of building detection in satellite images by combining multispectral classification and texture filtering. ISPRS J Photogramm Remote Sens. 54(1), 50–60 (1999)CrossRefGoogle Scholar
  25. 25.
    Herold L.X.M., Clarke K.C.: Spatial metrics and image texture for mapping urban land use. Photogramm. Eng. Remote Sens. 69(9), 991–1001 (2003)Google Scholar
  26. 26.
    Puissant A., Hirsch J., Weber C.: The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery. Int. J. Remote Sens. 26(4), 733–745 (2005)CrossRefGoogle Scholar
  27. 27.
    Ma W.-Y., Manjunath B.S.: EdgeFlow: a technique for boundary detection and image segmentation. IEEE Trans. Image Proc. 9(8), 1375–1388 (2000)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Deng Y., Manjunath B.S.: Unsupervised segmentation of color-texture regions in images and video. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 800–810 (2001)CrossRefGoogle Scholar
  29. 29.
    Canny J.F.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  30. 30.
    JSEG C++ implementation. http://vision.ece.ucsb.edu/segmentation/jseg/. Accessed 30–5–2009 (Accessed 25-6-2010)
  31. 31.
    Corcoran, P., Mooney, P., Winstanley, A., Tilton, J.: Convexity grouping of salient part contours. In: First Intentional Workshop on Parts and Attributes, European Conference on Computer Vision (Under Review) (2010)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Padraig Corcoran
    • 1
  • Adam Winstanley
    • 1
  • Peter Mooney
    • 1
  1. 1.Department of Computer Science, National Centre for GeocomputationNational University of Ireland MaynoothKildareIreland

Personalised recommendations