Machine Vision and Applications

, Volume 23, Issue 4, pp 761–772 | Cite as

Three-dimensional digitization of highly reflective and transparent objects using multi-wavelength range sensing

  • M. F. Osorio
  • A. Salazar
  • F. Prieto
  • P. Boulanger
  • P. Figueroa
Original Paper

Abstract

Digitizing specular and transparent objects pose significant problems using traditional 3-D scanning techniques due to the reflection and refraction that interfere with the optical scanning process used for triangulation. In this paper, we present how one can digitize those difficult objects by modifying a commercial 3-D acquisition system with an interchangeable ultraviolet and infrared light source. Experimental results show that the proposed technique can generate accurate 3-D models of these optically challenging objects without major modifications to the 3-D scanner. The results were obtained without preprocessing or multi-view manipulations. The precision of the 3-D measurements is evaluated relative to the visible spectrum acquisition obtained by painting the test objects with matte paint to suppress optical difficulties. Results shows that wavelength changes in the 3-D acquisition system do not change the scanner precision but solve many of the issues that specular and transparent objects poses.

Keywords

3D scanning Specular objects Transparent objects Multi-wavelength illumination Reconstruction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen F., Brown G.M., Song M.: Overview of three-dimensional shape measurement using optical methods. Opt. Eng. 39(1), 10–22 (2000)CrossRefGoogle Scholar
  2. 2.
    Blais F.: Review of 20 years of range sensor development. J. Electron. Imaging 13(1), 231–243 (2004)CrossRefGoogle Scholar
  3. 3.
    Ihrke, I., Kutulakos, K.N., Lensch, H.P.A., Magnor, M., Heidrich, W.: State of the art in transparent and specular object reconstruction. In STAR Proceedings of Eurographics, pp. 87–108 (2008)Google Scholar
  4. 4.
    Baba M., Ohtani K., Imai M., Konishi T.: New laser rangefinder for three-dimensional shape measurement of specular objects. Opt. Eng. 40(1), 53–60 (2001)CrossRefGoogle Scholar
  5. 5.
    Tarini M., Lensch H.P.A., Goesele M., Seidel H.P.: 3d acquisition of mirroring objects using striped patterns. Graph. Models 67(4), 233–259 (2005)CrossRefGoogle Scholar
  6. 6.
    Bonfort, T., Sturm, P., Gargallo, P.: General specular surface triangulation. Proceedings of the Asian Conference on Computer Vision, Hyderabad, India, vol. II, pp. 872–881 (2006)Google Scholar
  7. 7.
    Kutulakos K.N., Steger E.: A theory of refractive and specular 3d shape by light-path triangulation. Int. J. Comput. Vision 76(1), 13–29 (2008)CrossRefGoogle Scholar
  8. 8.
    Adato Y., Vasilyev Y., Zickler T., Ben-Shahar O.: Shape from specular flow. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(11), 2054–2070 (2010)CrossRefGoogle Scholar
  9. 9.
    Chuang, Y.Y., Zongker, D.E., Hindorff, J., Curless, B., Salesin, D.H., Szeliski, R.: Environment matting extensions: towards higher accuracy and real-time capture. In SIGGRAPH ’00: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pp. 121–130 (2000)Google Scholar
  10. 10.
    Pulli, K.: Multiview registration for large data sets. In 3-D Digital Imaging and Modeling, 1999. Proceedings. Second International Conference on, pp. 160–168 (1999)Google Scholar
  11. 11.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp algorithm. In 3-D Digital Imaging and Modeling, 2001. Proceedings. Third International Conference, pp. 145–152 (2001)Google Scholar
  12. 12.
    Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In SIGGRAPH ’96: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pp. 303–312. ACM, New York (1996)Google Scholar
  13. 13.
    Rocchini, C., Cignoni, P., Ganovelli, F., Montani, C., Pingi, P., Scopigno, R.: Marching intersections: an efficient resampling algorithm for surface management. In Shape Modeling and Applications, SMI 2001 International Conference on. pp. 296–305 (2001)Google Scholar
  14. 14.
    Cignoni P., Montani C., Scopigno R.: A comparison of mesh simplification algorithms. Computers & Graphics 22, 37–54 (1997)CrossRefGoogle Scholar
  15. 15.
    Kutulakos, K.N., Steger, E.: A theory of refractive and specular 3d shape by light-path triangulation. 2, 1448–1455 (2005)Google Scholar
  16. 16.
    Zongker, D.E., Werner, D.M., Curless, B., Salesin, D.H.: Environment matting and compositing. In SIGGRAPH ’99: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 205–214 (1999)Google Scholar
  17. 17.
    Park, J., Kak, A.C.: Multi-peak range imaging for accurate 3D reconstruction of specular objects. In: 6th Asian Conference on Computer Vision, Jeju, Korea, 27–30 Jan 2004, 6 pp (2004). http://cobweb.ecn.purdue.edu/RVL/Publications/Park
  18. 18.
    Park J., Kak A.C.: 3D modeling of optically challenging objects. IEEE Trans. Vis. Comput. Graph. 14(2), 246–262 (2008)CrossRefGoogle Scholar
  19. 19.
    Miyazaki D., Kagesawa M., Ikeuchi K.: Transparent surface modeling from a pair of polarization images. IEEE Trans Pattern Anal. Mach Intell. 26(1), 73–82 (2004)CrossRefGoogle Scholar
  20. 20.
    Matusik, W., Pfister, H., Ziegler, R., Ngan, A., McMillan, L.: Acquisition and rendering of transparent and refractive objects. EGRW ’02: Proceedings of the 13th Eurographics workshop on Rendering. pp. 267–278. Eurographics Association, Aire-la-Ville, (2002)Google Scholar
  21. 21.
    Ben-Ezra M., Nayar S.K.: What does motion reveal about transparency?. IEEE Int. Conf. Comput. Vis. 2, 1025 (2003)Google Scholar
  22. 22.
    Narita, D., Baba, M.: Measurement of 3-d shape and refractive index of a transparent object using laser rangefinder. Proceedings of the IEEE Conference on Instrumentation and Measurement Technology, 2005, vol. 3, pp. 2247–2252 (2005)Google Scholar
  23. 23.
    Chen, T., Lensch, H.P.A., Fuchs, C., Seidel, H.P.: Polarization and phase-shifting for 3d scanning of translucent objects. IEEE Conference on Computer Vision and Pattern Recognition, 2007. pp. 1–8 (2007)Google Scholar
  24. 24.
    Yamazaki, M., Iwata, S., Xu, G.: Dense 3d reconstruction of specular and transparent objects using stereo cameras and phase-shift method. In: ACCV (2), pp. 570–579 (2007)Google Scholar
  25. 25.
    Hullin M.B., Fuchs M., Ihrke I., Seidel H.P., Lensch H.P.A.: Fluorescent immersion range scanning. ACM Trans. Graph. 27(3), 1–10 (2008)CrossRefGoogle Scholar
  26. 26.
    Besl P.J.: Active, optical range imaging sensors. Mach. Vis. Appl. 1(2), 127–152 (1988)CrossRefGoogle Scholar
  27. 27.
    Masuda, T., Yokoya, N.: A robust method for registration and segmentation of multiple range images. In: Proceedings of the 1994 Second CAD-Based Vision Workshop. Champion, Pennsylvania, USA, 8–11 Feb 1994, pp. 106–113 (1994)Google Scholar
  28. 28.
    Hebert, M.: Active and passive range sensing for robotics. vol. 1, pp. 102–110 (2000)Google Scholar
  29. 29.
    Minolta: Non-contact 3D digitizer Vivid 9i/vi-9i. Instruction manual (hardware). Konica Minolta Sensing INC, 64 pp (2004). http://www.konicaminolta.com/content/download/4724/34935/VIVID910_VI-910.pdf
  30. 30.
    Cook R.L., Torrance K.E.: A reflectance model for computer graphics. ACM Trans. Graph. 1(1), 7–24 (1982)CrossRefGoogle Scholar
  31. 31.
    Zhang R., Tsai P.S., Cryer J.E., Shah M.: Shape-from-shading: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(8), 690–706 (1999)CrossRefGoogle Scholar
  32. 32.
    Landsberg, G.S.: Optics. Ed. Mir, Moscow, USSR, 926 pp (1976)Google Scholar
  33. 33.
    Phalippou, J.: Verres. propriétés et applications. Techniques de l’ingénieur. Sciences fondamentales, 19 pp. Reference AF3601 (2001). http://www.techniques-ingenieur.fr/
  34. 34.
    Creasey, J., Tyrell, G., De Mattos, J.: Infrared camera with phosphor coated CCD. European patent: EP1199886, 5 pp (2004). http://www.freepatentsonline.com/EP1199886.pdf
  35. 35.
    Minoglou, K., De Munck, K., Tezcan, D.S., Van Hoof, C., De Moor, P., Bogaerts, J.: Backside illuminated thinned cmos image sensors for space imaging. In: IEEE Sensors, pp. 1429–1432 (2008)Google Scholar
  36. 36.
    Banpil Photonics: Expanding the boundaries of optics and electronics technologies: September (2010). http://banpil.com/mis.htm

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • M. F. Osorio
    • 1
  • A. Salazar
    • 1
  • F. Prieto
    • 2
  • P. Boulanger
    • 3
  • P. Figueroa
    • 4
  1. 1.Universidad Nacional de Colombia sede ManizalesManizalesColombia
  2. 2.Universidad Nacional de Colombia sede BogotáBogotáColombia
  3. 3.University of AlbertaEdmontonCanada
  4. 4.Universidad de los AndesBogotáColombia

Personalised recommendations