Machine Vision and Applications

, Volume 23, Issue 3, pp 417–425 | Cite as

3D characterization of hot metallic shells during industrial forging

  • Youssef BokhabrineEmail author
  • Ralph Seulin
  • Lew F. C. Lew Yan Voon
  • Patrick Gorria
  • Gouenou Girardin
  • Miguel Gomez
  • Daniel Jobard
Original Paper


During industrial forging of hot metallic shells, it is necessary to regularly measure the dimensions of the parts, especially the inner and outer diameters and the thickness of the walls. A forging sequence lasts 2 h or more during which the diameter of the shell is regularly measured in order to decide when to stop the forging process. For better working conditions, for the safety of the blacksmiths, and for a faster and more accurate measurement, we have developed a novel system based on two commercially available time of flight laser scanners for the measurement of the diameters of hot cylindrical metallic shells during the forging process. The advantages of using laser scanners are that they can be placed very far from the hot shell, more than 15 m, while at the same time giving an accurate point cloud from which three-dimensional views of the shell can be reconstructed and diameter measurements done. Moreover, more accurate measurement is achieved in less time with the laser system than with the conventional method using a large ruler. The system has been successfully used to measure the diameters of hot cylindrical metallic shells.


3D Laser-based measurement systems Shell diameter measurement Dimensional measurement of hot surfaces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xiao, Y., Zhan, Q., Pang, P.: 3D data acquisition by terrestrial laser scanning for protection of historical buildings. In: International Conference on Wireless Communications, Networking and Mobile Computing, 21–25 Sep 2007, pp. 5971–5974 (2007)Google Scholar
  2. 2.
    Biskup, K., Arias, P., Lorenzo, H., Armesto, J.: Application of terrestrial laser scanning for shipbuilding. In: Proceedings of IAPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, vol. XXXVI, part 3, W52, Espoo, Finland, 12–14 Sep 2007, pp. 56–61 (2007)Google Scholar
  3. 3.
    Danson F.M., Hetherington D., Morsdorf F., Allgöwer B.: Forest canopy gap fraction from terrestrial laser scanning. IEEE Geosci. Remote Sens. Lett. 4(1), 157–160 (2007)CrossRefGoogle Scholar
  4. 4.
    Gordon, S., Lichti, D., Franke, J., Stewart, M.: Measurement of structural deformation using terrestrial laser scanners. In: Proceedings of 1st FIG International Symposium on Engineering Surveys for Construction Works and Structural Engineering, Nottingham, UK, 28 Jun–1 Jul 2004 (2004)Google Scholar
  5. 5.
    Tsakiri, M., Lichti, D., Pfeifer, N.: Terrestrial laser scanning for deformation monitoring. In: 3rd IAG/12th FIG Symposium, Baden, 22–24 May 2006 (2006)Google Scholar
  6. 6.
    Staiger, R.: Laser scanning in an industrial environment. In: Proceedings of FIG XXII International Congress, Washington, DC, 19–26 Apr 2002 (2002)Google Scholar
  7. 7.
    Mä ättä, K., Kostamovaara, J., Myllylä, R.: On the measurement of hot surfaces by pulsed time-of-flight laser radar techniques. In: Proceedings of SPIE, vol. 1265, Industrial inspection II, 12–13 Mar 1990, pp. 179–191 (1990)Google Scholar
  8. 8.
    Mä ättä, K., Kostamovaara, J., Myllylä, R.: A laser rangefinder for hot surface profiling measurements. In: Proceedings of SPIE, vol. 952, Laser Technologies in Industry, pp. 356–364 (1988)Google Scholar
  9. 9.
    Bokhabrine, Y., Lew Yan Voon, L.F.C., Seulin, R., Gorria, P., Gomez, M., Jobard, D.: 3D reconstruction of hot metallic surfaces for industrial part characterization. In: Proceedings of SPIE—Electronic Imaging 2009, SPIE, San Jose, USA, vol. 7251 (2009). doi: 10.1117/12.806015
  10. 10.
    Bokhabrine, Y., Lew Yan Voon, L.F.C., Seulin, R., Gorria, P., Girardin, G., Gomez, M., Jobard, D.: 3D dimensional measurement of large hot metallic shells. In: CD-ROM Proceedings of QCAV 2009, Wels, Austria (2009)Google Scholar
  11. 11.
    Leica Geosystems: Leica Scanstation 2 Time of Flight Laser Scanner.
  12. 12.
    Holland J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1992)Google Scholar
  13. 13.
    DoCarmo M.P.: Differential Geometry of Curves and Surfaces. Prentice-hall, Englewood Cliffs (1976)Google Scholar
  14. 14.
    Chaperon, T., Goulette, F.: Extracting cylinders in full 3D data using a random sampling method and the Gaussian image. In: Proceedings of Vision, Modeling and Visualization, University of Stuttgart, Germany, pp. 35–42 (2001)Google Scholar
  15. 15.
    Schnabel R., Wahl R., Klein R.: Efficient RANSAC for point-cloud shape detection. Comput. Graph. Forum 26(2), 214–226 (2007)CrossRefGoogle Scholar
  16. 16.
    Bolles, R.C., Fischler, M.A.: A RANSAC-based approach to model fitting and its application to finding cylinders in range data. In: Proceeding of the 7th IJCAL, Vancouver, pp. 637–643 (1981)Google Scholar
  17. 17.
    Besl P.J., McKay N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)CrossRefGoogle Scholar
  18. 18.
    Chen Y., Medioni G.: Object modeling by registration of multiple range images. Int. J. Image Vis. Comput. 10(3), 145–155 (1992)CrossRefGoogle Scholar
  19. 19.
    Shakarji C.M.: Least-squares fitting algorithms of the NIST algorithm testing system. J. Res. Natl. Inst. Stand. Technol. 103, 633 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Youssef Bokhabrine
    • 1
    • 2
    Email author
  • Ralph Seulin
    • 1
  • Lew F. C. Lew Yan Voon
    • 1
  • Patrick Gorria
    • 1
  • Gouenou Girardin
    • 2
  • Miguel Gomez
    • 2
  • Daniel Jobard
    • 2
  1. 1.Laboratoire LE2I, UMR CNRS 5158, IUT Le CreusotLe CreusotFrance
  2. 2.AREVA SFAR STEEL Creusot ForgeLe Creusot CedexFrance

Personalised recommendations