Machine Vision and Applications

, Volume 23, Issue 1, pp 15–24

The application of support vector machine classification to detect cell nuclei for automated microscopy

  • Ji Wan Han
  • Toby P. Breckon
  • David A. Randell
  • Gabriel Landini
Original Paper


The detection of cell nuclei for diagnostic purposes is an important aspect of many medical laboratory examinations. Precise location of cell nuclei can aid in correct diagnosis and aid in automated microscopy applications, such as cell counting and tissue architecture analysis. In this paper, we investigate the use of support vector machine classification based on Laplace edge features for this task. Compared with existing applications, we used only one type of cell nucleus images to train the classifier but this classifier can locate other two types of cell nuclei with different stains and scales successfully. The results illustrate that such a data driven approach has remarkable detection and generalization performance.


Cell nuclei detection Automated microscopy Support vector machines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P.: Molecular Biology of the Cell. Garland Science, Oxford (2002)Google Scholar
  2. 2.
    Burges C.J.C.: A tutorial on support vector machines for pattern. Data Mining Knowl. Discov. 2, 121–167 (1998)CrossRefGoogle Scholar
  3. 3.
    Chang, C.C., Lin, C.J.: Libsvm—a library for support vector machines.
  4. 4.
    Cristianini N., Shawe-Tayor J.: An Introduction to Support Vector Machines. The Press Syndicate of The University of Cambridge, Cambridge (2000)Google Scholar
  5. 5.
    El-Naqa, I., Yang, Y.Y., Wernick, M.N., Galatsanos, N.P., Nishikawa, R.: Support vector machine learning for detection of microcalcifications in mammograms. In: IEEE Transactions on Medical Imaging, vol. 21, pp. 1552–1563 (2002)Google Scholar
  6. 6.
    Glotsos, D., Spyridonos, P., Petalas, P., Cavouras, D., Ravazoula, P., Dadioti, P., Lekka, I., Nikiforidis G.: Computer-based malignancy grading of astrocytomas employing a support vector machine classifier, the who grading system and the regular hematoxylin-eosin diagnostic staining procedure. Anal. Quant. Cytol. Histol. 26 (2004)Google Scholar
  7. 7.
    Han, J.W., Breckon, T., Randell, D., Landini, G.: Radicular cysts and odontogenic keratocysts epithelia classification using cascaded haar classifiers. In: McKenna, S., Hoey, J. (eds.) Proceedings of the Twelfth Annual Conference of Medical Image Understanding and Analysis, pp. 54–58. University of Dundee, UK (2008)Google Scholar
  8. 8.
    Han, J.W., Lane, P.C.R., Davey, N., Sun, Y.: Comparing the performance of single-layer and two-layer support vector machines on face detection. In: Proceedings of The Seventh UK Workshop on Computational Intelligence (2007)Google Scholar
  9. 9.
    Hearst M.A.: Support vector machines. IEEE Intell. Syst. 13, 18–28 (1998)CrossRefGoogle Scholar
  10. 10.
    Herold, J., Friedenberger, M., Bode, M., Rajpoot, N., Schubert, W., Nattkemper, T.W.: Flexible synapse detection in fluorescence micrographs by modeling human expert grading. In: Proceedings of 2008 IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1347–1350. IEEE (2008)Google Scholar
  11. 11.
    Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification.
  12. 12.
    Kohavi. R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pp. 1137–1143 (1995)Google Scholar
  13. 13.
    Kruk, M., Osowski, S., Koktysz, R.: Recognition of colon cells using ensemble of classifiers. In: Proceedings of International Joint Conference on Neural Networks, pp. 288–293 (2007)Google Scholar
  14. 14.
    Landini, G.: Quantitative analysis of the epithelial lining architecture in radicular cysts and odontogenic keratocysts. Head Face Med. 2 (2006)Google Scholar
  15. 15.
    Landini G., Othman I.E.: Architectural analysis of oral cancer, dysplastic, and normal epithelia. Cytometry Part A 61 A, 45–55 (2004)CrossRefGoogle Scholar
  16. 16.
    Mitchell, T.M.: Machine Learning. The McGraw-Hill Companies, Inc (1997)Google Scholar
  17. 17.
    Mjolsness E., DeDoste D.: Machine learning for science: state of the art and future prospects. Science 293, 2051–2055 (2001)CrossRefGoogle Scholar
  18. 18.
    Nattkemper T.W., Ritter H.J., Schubert W.: A neural classifier enabling high-throughput topological analysis of lymphocytes in tissue sections. IEEE Trans. Inf. Technol. Biomed. 5, 138–149 (2001)CrossRefGoogle Scholar
  19. 19.
    Nattkemper, T.W., Twellmann, T., Schubert, W., Ritter, H.: Human vs. machine: evaluation of fluorescence micrographs. Comput. Biol. Med. 33 (2003)Google Scholar
  20. 20.
    Rahman, Md.M., Desai, B.C., Bhattacharya, P.: Supervised machine learning based medical image annotation and retrieval. In: Accessing Multilingual Information Repositories. Lecture Notes in Computer Science, pp. 692–701. Springer, Berlin (2006)Google Scholar
  21. 21.
    Robinson, M., Castellano, C.G., Adams, R., Davey, N., Sun, Y.: Identifying binding sites in sequential genomic data. In: Artificial Neural Networks—ICANN 2007, pp. 100–109, Porto, Portugal. Springer, Berlin (2007)Google Scholar
  22. 22.
    Ruifrok A.C., Johnston D.A.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23, 291–299 (2001)Google Scholar
  23. 23.
    Russ J.C.: The Image Processing Handbook. CRC Press, Inc, Boca Raton (1995)Google Scholar
  24. 24.
    Schölkopf B., Smola A.J.: Learning with Kernels. The MIT Press, Cambridge (2002)Google Scholar
  25. 25.
    Schnorrenberg, F., Pattichis, C., Kyriacou, K., Schizas, C.: Computer-aided detection of breast cancer nuclei. In: IEEE Trans. Inf. Technol. Biomed. 1, 128–140 (1997)Google Scholar
  26. 26.
    Shear M.: Cysts of the oral regions. 3rd edn. Wright, Oxford (1992)Google Scholar
  27. 27.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, p. 511, Los Alamitos, CA, USA, IEEE Computer Society (2001)Google Scholar
  28. 28.
    Wang, H., Zheng, C., Li, Y., Zhu, H., Yan, X.: Application of support vector machines to classification of blood cells. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 20 (2003)Google Scholar
  29. 29.
    Wang, M., Zhou, X., Li, F., Huckins, J., King, R.W., Wong, S.T.C.: Novel cell segmentation and online svm for cell cycle phase identification in automated microscopy. Bioinformatics 24 (2008)Google Scholar
  30. 30.
    Wei N., Flaschel E., Friehs K., Nattkemper T.W.: A machine vision system for automated non-invasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification. BMC Bioinform. 9, 449 (2008)CrossRefGoogle Scholar
  31. 31.
    Wei, N., You, J., Friehs, K., Flaschel, E., Nattkemper, T.W.: An in situ probe for on-line monitoring of cell density and viability on the basis of dark field micfroscopy in conjunction with image processing and supervised machine learning. Biotechnol. Bioeng. 97 (2007)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ji Wan Han
    • 1
  • Toby P. Breckon
    • 1
  • David A. Randell
    • 2
  • Gabriel Landini
    • 2
  1. 1.School of EngineeringCranfield UniversityCranfieldUK
  2. 2.Oral Pathology Unit, School of DentistryUniversity of BirminghamBirminghamUK

Personalised recommendations