Machine Vision and Applications

, Volume 23, Issue 1, pp 65–77 | Cite as

Disparity disambiguation by fusion of signal- and symbolic-level information

  • Jarno RalliEmail author
  • Javier Díaz
  • Sinan Kalkan
  • Norbert Krüger
  • Eduardo Ros
Original Paper


We describe a method for resolving ambiguities in low-level disparity calculations in a stereo-vision scheme by using a recurrent mechanism that we call signal-symbol loop. Due to the local nature of low-level processing it is not always possible to estimate the correct disparity values produced at this level. Symbolic abstraction of the signal produces robust, high confidence, multimodal image features which can be used to interpret the scene more accurately and therefore disambiguate low-level interpretations by biasing the correct disparity. The fusion process is capable of producing more accurate dense disparity maps than the low- and symbolic-level algorithms can produce independently. Therefore we describe an efficient fusion scheme that allows symbolic- and low-level cues to complement each other, resulting in a more accurate and dense disparity representation of the scene.


Disparity fusion Feed-back loop Disparity disambiguation Low- and symbolic-level fusion Signal-symbol loop 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

ESM 1 (AVI 28253 kb)


  1. 1.
    Darabiha A., MacLean W., Rose J.: Reconfigurable hardware implementation of a phase-correlation stereoalgorithm. Mach. Vis. Appl. 17(2), 116–132 (2006)CrossRefGoogle Scholar
  2. 2.
    Díaz, J.: Multimodal bio-inspired vision system. High performance motion and stereo processing architecture. PhD thesis, University of Granada, Spain (2006)Google Scholar
  3. 3.
    Díaz J., Ros E., Carillo R., Prieto A.: Real-time system for high-image-resolution disparity. IEEE Trans. Image Process. 16, 280–285 (2006)CrossRefGoogle Scholar
  4. 4.
    Felsberg M., Kalkan S., Krüger N.: Continuous characterization of image structures of different dimensionality. Image Vis. Comput. 27(6), 628–636 (2009)CrossRefGoogle Scholar
  5. 5.
    Fitzgibbon, A.W., Zisserman, A.: Multibody Structure and Motion: 3-D Reconstruction of Independently Moving Objects. Lecture Notes in Computer Science, vol. 1842, pp. 891–906 (2000)Google Scholar
  6. 6.
    Fleet D., Jepson A.: Phase-based disparity measurement. Comput. Vis. Graph. Image Process. 53(2), 198–210 (1991)zbMATHGoogle Scholar
  7. 7.
    Fleet D., Jepson A.: Stability of phase information. IEEE Trans. Pattern Anal. Mach. Intell. 15(12), 1253–1268 (1993)CrossRefGoogle Scholar
  8. 8.
    Gautama T., Hulle M.V.: A phase-based approach to the estimation of the optical flow field using spatial filtering. IEEE Trans Neural Netw. 13, 1127–1136 (2002)CrossRefGoogle Scholar
  9. 9.
    Hubel D., Wiesel T.: Anatomical demonstration of columns in the monkey striate cortex. Nature 221, 747–750 (1969)CrossRefGoogle Scholar
  10. 10.
    Kalkan, S., Yan, S., Krüger, V., Wörgötter, F., Krüger, N.: A signal-symbol loop mechanism for enhanced edge extraction. In: International Conference on Computer Vision Theory and Applications VISAPP’08, pp. 214–221 (2008)Google Scholar
  11. 11.
    Krüger, N.: Three dilemmas of signal- and symbol-based representations in computer vision. In: Proceedings of the Workshop Brain, Vision and Artificial Intelligence, vol. 3704, pp. 167–176 (2005)Google Scholar
  12. 12.
    Krüger N., Lappe M., Wörgötter F.: Biologically motivated multi-modal processing of visual primitives. Interdiscip. J. Artif. Intell. Simul. Behav. 1(5), 417–427 (2004)Google Scholar
  13. 13.
    Lee M., Medioni G., Mordohai P.: Inference of segmented overlapping surfaces from binocular stereo. IEEE Trans. Pattern Anal. Mach. Intell. 24, 824–837 (2002)CrossRefGoogle Scholar
  14. 14.
    Medioni G., Lee M., Tang C.: A Computational Framework for Segmentation and Grouping. Elsevier, Amsterdam (2000)zbMATHGoogle Scholar
  15. 15.
    Mordohai P., Medioni G.: Stereo using monocular cues within the tensor voting framework. IEEE Trans. Pattern Anal. Mach. Intell. 28, 968–982 (2006)CrossRefGoogle Scholar
  16. 16.
    Pugeault N.: Early Cognitive Vision: Feedback Mechanisms for the Disambiguation of Early Visual Representation. Vdm Verlag Dr. Müller, Germany (2008)Google Scholar
  17. 17.
    Pugeault, N., Wörgötter, F., Krüger, N.: Multi-modal scene reconstruction using perceptual grouping constraints. In: Proceedings of the 5th IEEE Computer Society Workshop on Perceptual Organization in Computer Vision, New York City, 22 June 2006 (in conjunction with IEEE CVPR 2006)Google Scholar
  18. 18.
    Pugeault, N., Wörgötter, F., Krüger, N.: Multi-modal scene reconstruction using preceptual grouping constraints. In: Proceedings of the 5th IEEE Computer Society Workshop on Perceptual Organization in Computer Vision, pp. 195–195 (2006)Google Scholar
  19. 19.
    Qian G., Chellappa R., Zheng Q.: Bayesian algorithms for simultaneous structure from motion estimation of multiple independently moving objects. IEEE Trans. Image Process. 14, 94–109 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ralli J., Díaz J., Ros E.: A method for sparse disparity densification using voting mask propagation. J. Vis. Commun. Image Represent. 21(1), 67–74 (2010)CrossRefGoogle Scholar
  21. 21.
    Ralli, J., Díaz, J., Ros, E.: Spatial and temporal constraints in variational correspondence methods. IEEE Trans. Image Process. (2010, submitted)Google Scholar
  22. 22.
    Rares, A., Reinders, M., Hendriks, E.: Image interpretation systems. Tech. rep., mCCWS project Technical Report (MCCWS (1999)Google Scholar
  23. 23.
    Sabatini, S., Gastaldi, G., Solari, F., Pauwels, K., van Hulle, M., Diaz, J., Ros, E., Pugeault, N., Krüger, N.: Compact (and accurate) early vision processing in the harmonic space. In: VISAPP (1), vol. 1, pp. 213–220 (2007)Google Scholar
  24. 24.
    Sabatini, S., Gastaldi, G., Solari, F., Pauwels, K., Van Hulle, M., Diaz, J., Ros, E., Pugeault, N., Krüger, N.: A compact harmonic code for early vision based on anisotropic frequency channels. Comput. Vis. Image Underst. (2010, accepted)Google Scholar
  25. 25.
    Scharstein D., Szeliski R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002)zbMATHCrossRefGoogle Scholar
  26. 26.
    Solari F., Sabatini S., Bisio G.: Fast technique for phase-based disparity estimation with no explicit calculation of phase. Electron. Lett. 37(23), 1382–1383 (2001)CrossRefGoogle Scholar
  27. 27.
    Tang Y.L., Kasturi R.: Tracking moving objects during low altitude flight. Mach. Vis. Appl. 9, 20–31 (1996)CrossRefGoogle Scholar
  28. 28.
    Weems, C.C.: Architectural requirements of image understanding with respect to parallel processing. In: Proceedings of the IEEE, vol. 79, no. (4), pp. 537–547 (1991)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jarno Ralli
    • 1
    Email author
  • Javier Díaz
    • 1
  • Sinan Kalkan
    • 2
  • Norbert Krüger
    • 3
  • Eduardo Ros
    • 1
  1. 1.Departamento de Arquitectura y Tecnología de Computadores, Escuela Técnica Superior de Ingeniería Informatica y de TelecomunicacíonUniversidad de GranadaGranadaSpain
  2. 2.KOVAN Research Lab, Department of Computer EngineeringMiddle East Technical UniversityAnkaraTurkey
  3. 3.Cognitive Vision Lab, The Maersk Mc-Kinney Moller InstituteUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations