Machine Vision and Applications

, Volume 22, Issue 6, pp 913–926 | Cite as

Evaluation of robustness against rotation of LBP, CCR and ILBP features in granite texture classification

  • Antonio Fernández
  • Ovidiu Ghita
  • Elena González
  • Francesco Bianconi
  • Paul F. Whelan
Original Paper


The aim of the paper is to conduct a performance evaluation where several texture descriptors such as Local Binary Patterns (LBP), Coordinated Clusters Representation (CCR) and (Improved Local Binary Patterns) ILBP are applied for granite texture classification. In our work we were particularly interested to assess the robustness of the analysed texture descriptors to image rotation when they were implemented in both the standard and rotation-invariant forms. In order to attain this goal, we have generated a database of granite textures that were rotated using hardware and software procedures. The experimental data indicate that the ILBP features return improved performance when compared with those achieved by the LBP and CCR descriptors. Another important finding resulting from this investigation reveals that the classification results obtained when the texture analysis techniques were applied to granite image data rotated by software procedures are inconsistent with those achieved when the hardware-rotated data are used for classification purposes. This discovery is surprising and suggests that the results obtained when the texture analysis techniques are evaluated on synthetically rotated data need to be interpreted with care, as the principal characteristics of the texture are altered by the data interpolation that is applied during the image rotation process.


Texture classification Rotation invariance LBP CCR ILBP Granite grading 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahonen T., Matas J., He C., Pietikäinen M.: Rotation invariant image description with local binary pattern histogram Fourier features. Lect. Notes Comput. Sci. 5575, 61–70 (2009)CrossRefGoogle Scholar
  2. 2.
    Baxter M.: The burnside di-lemma: combinatorics and puzzle symmetry. In: Cipra, B., Demaine, E.D., Demaine, M.L., Rodgers, T. (eds) Tribute to a Mathemagician, pp. 199–210. A K Peters Ltd, Wellesley (2005)Google Scholar
  3. 3.
    Bennamoun M., Bodnarova A.: Digital image processing techniques for automatic textile quality control. Syst. Anal. Model. Simul. 43, 1581–1614 (2003)CrossRefGoogle Scholar
  4. 4.
    Bianconi, F., Fernández, A.: Granite texture classification with Gabor filters. In: Proc. of the 18th International Congress on Graphical Engineering, Sitges (Spain), May 31–June 2 (2006)Google Scholar
  5. 5.
    Bianconi F., Fernández A., González E., Ribas F.: Texture classification through combination of sequential colour texture classifiers. Lect. Notes Comput. Sci. 4756, 231–240 (2007)CrossRefGoogle Scholar
  6. 6.
    Bianconi, F., Fernández, A., Mancini, A.: Assessment of rotation-invariant texture classification through Gabor filters and Discrete Fourier Transform. In: Proc. of the 20th International Congress on Graphical Engineering, Valencia (Spain), June 4–6 (2008)Google Scholar
  7. 7.
    Bianconi F., Fernández A., González E., Caride J., Calviño A.: Rotation-invariant colour texture classification through multilayer CCR. Pattern Recogn. Lett. 30, 765–773 (2009)CrossRefGoogle Scholar
  8. 8.
    Braga-Neto U., Dougherty E.: Exact performance of error estimators for discrete classifiers. Pattern Recogn. 38, 1799–1814 (2005)CrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, G.Y., Bui, T.D., Kryzak, A.: Invariant Ridgelet-Fourier descriptor for pattern recognition. In: Proc. of the 18th International Conference on Pattern Recognition, Hong Kong, pp. 768–771, August 20–24 (2006)Google Scholar
  10. 10.
    Deng H., Clausi D.A.: Gaussian MRF rotation-invariant features for image classification. IEEE Trans. Pattern Anal. 26, 951–955 (2004)CrossRefGoogle Scholar
  11. 11.
    Duda R.O., Hart P.E., Stork D.G.: Pattern Classification. Wiley, New York (2001)zbMATHGoogle Scholar
  12. 12.
    Ghita O., Whelan P.F., Carew T., Nammalwar P.: Quality grading of painted slates using texture analysis. Comput. Ind. 56, 802–815 (2005)CrossRefGoogle Scholar
  13. 13.
    Guillén-Bonilla J.T., Kurmyshev E.V., Fernández A.: Quantifying a similarity of classes of texture images. Appl. Opt. 46, 5562–5570 (2007)CrossRefGoogle Scholar
  14. 14.
    Hoang K., Wen W., Nachimuthu A., Jiang X.L.: Achieving automation in leather surface inspection. Comput. Ind. 34, 43–54 (1997)CrossRefGoogle Scholar
  15. 15.
    Jin, H., Liu, Q., Tong, X.: Face detection using improved LBP under Bayesian framework. In: Proc. of the 3rd International Conference on Image and Graphics, pp. 306–309 (2004)Google Scholar
  16. 16.
    Kirsanova E.N., Sadovsky M.G.: Entropy approach in the analysis of anisotropy of digital images. Open Syst. Info. Dyn. 84, 239–250 (2002)CrossRefGoogle Scholar
  17. 17.
    Kukkonen S., Kälviäinen H., Parkkinen J.: Color features for quality control in ceramic tile industry. Opt. Eng. 40, 170–177 (2001)CrossRefGoogle Scholar
  18. 18.
    Kurmyshev E.V., Cervantes M.: A quasi-statistical approach to digital image representation. Rev. Mex. Fis. 42, 104–116 (1996)MathSciNetGoogle Scholar
  19. 19.
    Kurmyshev E., Poterasu M., Guillén-Bonilla J.T.: Image scale determination for optimal texture classification using coordinated cluster representation. Appl. Opt. 46, 1467–1476 (2007)CrossRefGoogle Scholar
  20. 20.
    Lahajnar F., Kovacic S.: Rotation-invariant texture classification. Pattern Recogn. Lett. 5575, 1151–1161 (2003)CrossRefGoogle Scholar
  21. 21.
    Larabi, M., Colot, O., Richard, N., Fernandez-Maloigne, C.: Using a CBIR scheme based on experts knowledge for a computer-aided classification of ornamental stones. In: Proc. of the 6th International Conference on Quality Control by Artificial Vision, Gatlinburg (USA), pp. 189–200, May 19–23 (2003)Google Scholar
  22. 22.
    Larkin K.G., Oldfield M.A., Klemm H.: Fast Fourier method for the accurate rotation of rotation of sampled images. Opt. Commun. 139, 99–106 (1997)CrossRefGoogle Scholar
  23. 23.
    Lepistö L., Kunttu I., Visa A.: Rock image classification using color features in Gabor space. J. Electron. Imaging 14, 040503-1-3 (2005)CrossRefGoogle Scholar
  24. 24.
    Lepistö L., Kunttu I., Visa A.: Color-based classification of natural rock images using classifier combinations. Lect. Notes Comput. Sci. 3540, 901–909 (2005)CrossRefGoogle Scholar
  25. 25.
    Lepistö L., Kunttu I., Visa A.: Rock image classification based on k-nearest neighbour voting. IEE Proc. Vis. Image. Signal Process. 153, 475–482 (2006)CrossRefGoogle Scholar
  26. 26.
    Lepistö L., Kunttu I., Visa A.: Classification of natural rock images using classifier combinations. Opt. Eng. 45(9), 097201-1-7 (2006)CrossRefGoogle Scholar
  27. 27.
    Liao S., Law W.K., Chung A.C.S.: Combining microscopic and macroscopic information for rotation and histogram equalization invariant texture classification. Lect. Notes Comput. Sci. 3851, 100–109 (2006)CrossRefGoogle Scholar
  28. 28.
    Liao, S., Chung, A.C.S.: Texture classification by using advanced local binary patterns and spatial distribution of dominant patterns. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2007), vol. I, pp. 1221–1224 (2007)Google Scholar
  29. 29.
    Mäenpää, T., Ojala, T., Pietikäinen, M., Soriano, M.: Robust texture classification by subsets of Local Binary Patterns. In: Proc. 15th International Conference on Pattern Recognition, Barcelona (Spain), vol. 3, pp. 947–950 (2000)Google Scholar
  30. 30.
    Mäenpää T., Pietikäinen M.: Texture analysis with local binary patterns. In: Chen, C.H., Wang, P.S.P. (eds) The Handbook of Pattern Recognition and Computer Vision, pp. 197–216. World Scientific Publishing, Singapore (2005)CrossRefGoogle Scholar
  31. 31.
    Martínez-Alajarín J., Luis-Delgado J.D., Tomás-Balibrea L.M.: Automatic system for quality-based classification of marble textures. IEEE Trans. Syst. Man Cybern. C 35, 488–497 (2005)CrossRefGoogle Scholar
  32. 32.
    Ojala T., Pietikäinen M., Harwood D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29, 51–59 (1996)CrossRefGoogle Scholar
  33. 33.
    Ojala T., Pietikäinen M., Mäenpää T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. 24, 971–987 (2002)CrossRefGoogle Scholar
  34. 34.
    Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllönen, J., Huovinen, S.: Outex-new framework for empirical evaluation of texture analysis algorithms. In: Proc. of the 16th International Conference on Pattern Recognition, Quebec (Canada), pp. 701–706 (2002)Google Scholar
  35. 35.
    Paclík P., Verzakov S., Duin R.P.W.: Improving the maximum-likelihood co-occurrence classifier: A study on classification of inhomogeneous rock images. Lect. Notes Comput. Sci. 3540, 998–1008 (2005)CrossRefGoogle Scholar
  36. 36.
    Partio, M., Cramariuc, B., Gabbouj, M., Visa, A.: Rock texture retrieval using gray level co-occurence matrix. In: Proc. of the 5th Nordic Signal Processing Symposium, 2002 (NORSIG 2002), on board Hurtigruten (Norway), 4–7 October (2008)Google Scholar
  37. 37.
    Paschos G.: Fast color texture recognition using chromaticity moments. Pattern Recogn. Lett. 21, 837–841 (2000)CrossRefGoogle Scholar
  38. 38.
    Porter R., Canagarajah N.: Robust rotation-invariant texture classification: wavelet, Gabor filter and GMRF based schemes. IEE Proc. Vis. Image Signal Process. 144, 180–188 (1997)CrossRefGoogle Scholar
  39. 39.
    Rubner Y., Puzicha J., Tomasi C., Buhmann J.M.: Empirical evaluation of dissimilarity measures for color and texture. Comput. Vis. Image. Underst. 84, 25–43 (2001)CrossRefzbMATHGoogle Scholar
  40. 40.
    Sánchez-Yáñez R.E., Kurmyshev E.V., Cuevas F.J.: A framework for texture classification using the coordinated clusters representation. Pattern Recogn. Lett. 24, 21–31 (2003)CrossRefzbMATHGoogle Scholar
  41. 41.
    Sánchez-Yáñez R.E., Kurmyshev E.V., Fernández A.: One-class texture classifier in the CCR feature space. Pattern Recogn. Lett. 24, 1503–1511 (2003)CrossRefzbMATHGoogle Scholar
  42. 42.
    Sezgin M., Sankur B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13, 146–165 (2004)CrossRefGoogle Scholar
  43. 43.
    Shadmon, A.: Stone Absolute (by any other name). Litos 78 (2005)Google Scholar
  44. 44.
    Silvén O., Niskanen M., Kauppinen H.: Wood inspection with non-supervised clustering. Mach. Vis. Appl. 13, 275–285 (2003)CrossRefGoogle Scholar
  45. 45.
    Standard EN 12440:2000: Natural stone—denomination criteriaGoogle Scholar
  46. 46.
    Tan T.S.C., Kittler J.: Colour texture analysis using colour histogram. IEE Proc. Vis. Image Signal Process. 141, 403–412 (1994)CrossRefGoogle Scholar
  47. 47.
    Turtinen M., Pietikäinen M., Silvén O., Mäenpää T., Niskanen M.: Paper characterisation by texture using visualisation-based training. Int. J. Adv. Manuf. Tech. 22, 890–898 (2003)CrossRefGoogle Scholar
  48. 48.
    Wang L., He D.C.: Texture classification using texture spectrum. Pattern Recogn. 23, 905–910 (1990)CrossRefGoogle Scholar
  49. 49.
    Weisstein E.W.: CRC Concise Encyclopedia of Mathematics. 2nd edn. CRC Press, Boca Raton (2002)CrossRefGoogle Scholar
  50. 50.
    Xie X., Mirmehdi M.: A galaxy of texture features. In: Mirmehdi, M., Xie, X., Suri, J. (eds) Handbook of Texture Analysis, pp. 347–406. Imperial College Press, London (2008)Google Scholar
  51. 51.
    Yao C.H., Chen S.Y.: Retrieval of translated, rotated and scaled color textures. Pattern Recogn. 36, 913–929 (2003)CrossRefGoogle Scholar
  52. 52.
    Yu, G., Cao, W., Li, Z.: Rotation and Scale Invariant for Texture Analysis Based on Radon Transform and Wavelet Transform. In: Proc. of the 3rd International Conference on Pervasive Computing and Applications, Alexandria (Egypt), pp. 704–708, 6–8 October (2008)Google Scholar
  53. 53.
    Zhou H., Wang R., Wang C.: A novel extended local-binary-pattern operator for texture analysis. Info. Sci. 178, 4314–4325 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Antonio Fernández
    • 1
  • Ovidiu Ghita
    • 2
  • Elena González
    • 1
  • Francesco Bianconi
    • 3
  • Paul F. Whelan
    • 2
  1. 1.Department of Engineering Design, School of Industrial EngineeringUniversity of VigoVigoSpain
  2. 2.Vision Systems Group, School of Electronic EngineeringDublin City UniversityDublin 9Ireland
  3. 3.Department of Industrial EngineeringUniversity of PerugiaPerugiaItaly

Personalised recommendations