Machine Vision and Applications

, Volume 22, Issue 2, pp 439–448 | Cite as

Real-time vehicle tracking for driving assistance

  • Andrea FossatiEmail author
  • Patrick Schönmann
  • Pascal Fua
Short Paper


Detecting car taillights at night is a task which can nowadays be accomplished very fast on cheap hardware. We rely on such detections to build a vision-based system that, coupling them in a rule-based fashion, is able to detect and track vehicles. This allows the generation of an interface that informs a driver of the relative distance and velocity of other vehicles in real time and triggers a warning when a potentially dangerous situation arises. We demonstrate the system using sequences shot using a camera mounted behind a car’s windshield.


Vehicle tracking Real-time Light detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

ESM 2 (MPG 3,130 kb)

ESM 3 (MPG 3,154 kb)

ESM 4 (MPG 6,656 kb)

ESM 5 (MPG 3,148 kb)

ESM 6 (MPG 3,154 kb)

ESM 7 (AVI 1,187 kb)

ESM 8 (MPG 1,562 kb)

ESM 9 (MPG 1,618 kb)

ESM 10 (MPG 925 kb)

ESM 11 (AVI 1,750 kb)

ESM 12 (MPG 1,184 kb)

ESM 13 (MPG 1,186 kb)


  1. 1.
    Gavrila D., Munder S.: Multi-cue pedestrian detection and tracking from a moving vehicle. Int. J. Comput. Vis. 73, 41–59 (2007)CrossRefGoogle Scholar
  2. 2.
    Sergi, M., Shankwitz, C., Donath, M.: Lidar-based vehicle tracking for a virtual mirror. In: Proceedings of the Intelligent Vehicles Symposium, pp. 333–338. IEEE, USA (2003)Google Scholar
  3. 3.
    Lin, S., Chen, Y., Wu, B.: A real-time multiple-vehicle detection and tracking system with prior occlusion detection and resolution. In: Proceedings of the 18th International Conference on Pattern Recognition, pp. 828–831 (2006)Google Scholar
  4. 4.
    Coifman B., Beymer D., Mclauchlan P., Malik J.: A real-time computer vision system for vehicle tracking and traffic surveillance. Transp. Res. Part C Emerg. Technol. 6(4), 271–288 (1998)CrossRefGoogle Scholar
  5. 5.
    Cucchiara, R., Piccardi, M.: Vehicle detection under day and night illumination. In: Proceedings of ISCS-IIA99, Special Session on Vehicle Traffic and Surveillance, Genoa, Italy (1999)Google Scholar
  6. 6.
    DeFauw, R., Lakshmanan, S., Prasad, K.V.: A system for small target detection, tracking, and classification. In: Proceedings of the Intelligent Transportation Systems, 1999. International Conference on IEEE/IEEJ/JSAI, pp. 639–644 (1999)Google Scholar
  7. 7.
    Alt, N., Claus, C., Stechele, W.: Hardware/software architecture of an algorithm for vision-based real-time vehicle detection in dark environments. In: DATE ’08: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 176–181. ACM, New York (2008)Google Scholar
  8. 8.
    Eichner, M.L., Breckon, T.P.: Real-time video analysis for vehicle lights detection using temporal information. In: 4th European Conference on Visual Media Production, IETCVMP, p. I-9 (2007)Google Scholar
  9. 9.
    Kim, S., Oh, S.-Y., Kang, J., Ryu, Y., Kim, K., Park, S.-C., Park, K.: Front and rear vehicle detection and tracking in the day and night times using vision and sonar sensor fusion. In: International Conference on Intelligent Robots and Systems (IROS 2005), IEEE/RSJ, pp. 2173–2178 (2005)Google Scholar
  10. 10.
    Li, X., Yao, X., Murphey, Y.L., Karlsen, R., Gerhart, G.: A real-time vehicle detection and tracking system in outdoor traffic scenes. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 761–764 (2004)Google Scholar
  11. 11.
    Marmoiton, F., Collange, F., Alizon, J., Derutin, J.P.: 3d localization of a car observed through a monocular video camera. In: Proceedings of the IEEE International Conference on Intelligent Vehicles (1998)Google Scholar
  12. 12.
    Chateau, T., Lapreste, J.T.: Robust real time tracking of a vehicle by image processing. In: IEEE Intelligent Vehicles Symposium, pp. 315–318 (2004)Google Scholar
  13. 13.
    Betke M., Haritaoglu E., Davis L.S.: Real-time multiple vehicle detection and tracking from a moving vehicle. Mach. Vis. Appl. 12, 69–83 (2000)CrossRefGoogle Scholar
  14. 14.
    Sukthankar, R.: Raccoon: a real-time autonomous car chaser operating optimally at night. In: Proceedings of IEEE Intelligent Vehicles (1993)Google Scholar
  15. 15.
    Suzuki K., Horiba I., Sugie N.: Linear-time connected-component labeling based on sequential local operations. Comput. Vis. Image Underst. 89, 1–23 (2003)zbMATHCrossRefGoogle Scholar
  16. 16.
    Jeffreys H.: Theory of Probability. Clarendon Press, Oxford (1961)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Andrea Fossati
    • 1
    Email author
  • Patrick Schönmann
    • 2
  • Pascal Fua
    • 1
  1. 1.CVLab, EPFLLausanneSwitzerland
  2. 2.Cinetis SAMartignySwitzerland

Personalised recommendations