Machine Vision and Applications

, Volume 21, Issue 5, pp 601–611 | Cite as

Robust 3D object registration without explicit correspondence using geometric integration

Special Issue Paper

Abstract

3D vision-guided manipulation of components is a key problem of industrial machine vision. In this paper, we focus on the localization and pose estimation of known industrial objects from 3D measurements delivered by a scanning sensor. Since local information extracted from these measurements is unreliable due to noise, spatially unstructured measurements and missing detections, we present a novel objective function for robust registration without using correspondence information, based on the likelihood of model points. Furthermore, by extending Runge–Kutta-type integration directly to the group of Euclidean transformation, we infer object pose by computing the gradient flow directly on the related manifold. Comparison of our approach to existing state of the art methods shows that our method is more robust against poor initializations while having comparable run-time performance.

Keywords

Registration Iterative closest point (ICP) Kernel-based similarity measures Geometric integration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Johnson A., Hebert M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21, 433–449 (1999)CrossRefGoogle Scholar
  2. 2.
    Frome, A., Huber, D., Kolluri, R., Bulow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Proceedings of the European Conference on Computer Vision (2004)Google Scholar
  3. 3.
    Chua C.S., Jarvis R.: 3D free-form surface registration and object recognition. Int. J. Comput. Vis. 17, 77–99 (1996)CrossRefGoogle Scholar
  4. 4.
    Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: Proceedings of the 3rd Eurographics Symposium on Geometry Processing (2005)Google Scholar
  5. 5.
    Eggert D.W., Lorusso A., Fisher R.B.: Estimating 3-D rigid body transformations: a comparison of four major algorithms. Mach. Vis. Appl. 9, 272–290 (1997)CrossRefGoogle Scholar
  6. 6.
    Jian, B., Vemuri, B.C.: A robust algorithm for point set registration using mixture of Gaussians. In: Proceedings of the 10th IEEE International Conference on Computer Vision (2005)Google Scholar
  7. 7.
    Besl P.J., McKay N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)CrossRefGoogle Scholar
  8. 8.
    Chen Y., Medioni G.: Object modelling by registration of multiple range images. Image Vis. Comput. 10, 145–155 (1992)CrossRefGoogle Scholar
  9. 9.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings of the 3rd International Conference on 3D Digital Imaging and Modeling (2001)Google Scholar
  10. 10.
    Jost, T., Hügli, H.: A multi-resolution scheme ICP algorithm for fast shape registration. In: International Symposium on 3D Data Processing Visualization and Transmission (2002)Google Scholar
  11. 11.
    Rangarajan, A., Chui, H., Bookstein, F.L.: The softassign procrustes matching algorithm. In: Proceedings of the 15th International Conference on Information Processing in Medical Imaging (1997)Google Scholar
  12. 12.
    Fitzgibbon A.W.: Robust registration of 2D and 3D point sets. Image Vis. Comput. 21, 1145–1153 (2003)CrossRefGoogle Scholar
  13. 13.
    Granger, S., Pennec, X.: Multi-scale EM-ICP: a fast and robust approach for surface registration. In: Proceedings of the 7th European Conference on Computer Vision, Part IV, pp. 418–432 (2002)Google Scholar
  14. 14.
    Tsin, Y., Kanade, T.: A correlation-based approach to robust point set registration. In: Proceedings of the European Conference on Computer Vision (2004)Google Scholar
  15. 15.
    Goldberger, J., Gordon, S., Greenspan, H.: An efficient image similarity measure based on approximations of KL-divergence between two Gaussian mixtures. In: Proceedings of the 9th IEEE International Conference on Computer Vision (2003)Google Scholar
  16. 16.
    Munthe-Kaas H.: Runge–Kutta methods on lie groups. BIT Numer. Math. 38, 92–111 (1998)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Crouch P.E., Grossman R.: Numerical integration of ordinary differential equations on manifolds. J. Nonlinear Sci. 3, 1–33 (1993)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Cover T., Thomas J.: Elements of Information Theory. Wiley, New York (1991)MATHCrossRefGoogle Scholar
  19. 19.
    Rockafellar R., Wets R.B.: Variational Analysis. Springer, Berlin (1998)MATHCrossRefGoogle Scholar
  20. 20.
    Edelman A., Arias T.A., Smith S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1999)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Schwarz H.R.: Numerische Mathematik. B. G. Teubner, Stuttgart (1986)MATHGoogle Scholar
  22. 22.
    Hairer E., Nørsett S.P., Wanner G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, Berlin (2008)Google Scholar
  23. 23.
    Matsushima Y.: Differentiable Manifolds. Marcel Dekker, New York (1972)MATHGoogle Scholar
  24. 24.
    Turk, G., Mullins, B.: Large Geometric Models Archive. http://www-static.cc.gatech.edu/projects/large_models/
  25. 25.
    Pottmann H., Huang Q.X., Yang Y.L., Hu S.M.: Geometry and convergence analysis of algorithms for registration of 3D shapes. Int. J. Comput. Vis. 67, 277–296 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Image and Pattern Analysis Group (IPA), Heidelberg Collaboratory for Image Processing (HCI)University of HeidelbergHeidelbergGermany

Personalised recommendations