Advertisement

Machine Vision and Applications

, Volume 21, Issue 4, pp 577–585 | Cite as

Locality preserving and global discriminant projection with prior information

  • Honggang Zhang
  • Weihong Deng
  • Jun Guo
  • Jie Yang
Original Paper

Abstract

Existing supervised and semi-supervised dimensionality reduction methods utilize training data only with class labels being associated to the data samples for classification. In this paper, we present a new algorithm called locality preserving and global discriminant projection with prior information (LPGDP) for dimensionality reduction and classification, by considering both the manifold structure and the prior information, where the prior information includes not only the class label but also the misclassification of marginal samples. In the LPGDP algorithm, the overlap among the class-specific manifolds is discriminated by a global class graph, and a locality preserving criterion is employed to obtain the projections that best preserve the within-class local structures. The feasibility of the LPGDP algorithm has been evaluated in face recognition, object categorization and handwritten Chinese character recognition experiments. Experiment results show the superior performance of data modeling and classification to other techniques, such as linear discriminant analysis, locality preserving projection, discriminant locality preserving projection and marginal Fisher analysis.

Keywords

Locality preserving and global discriminant projection Prior information Dimensionality reduction Face recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belhumeour P., Hespanha J., Kriegman D.: Eigenfaces vs fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)CrossRefGoogle Scholar
  2. 2.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral tech- niques for embedding and clustering. In: Proceedings of NIPS’ 0115 (2001)Google Scholar
  3. 3.
    Cai D., He X., Hu Y., Han J., Zhang H.: Orthogonal laplacianfaces for face recognition. IEEE Trans. Image Processing 15(11), 3608–3614 (2006)CrossRefGoogle Scholar
  4. 4.
    Chen, H.T., Chang, H.W., Liu, T.L.: Local discriminant embedding and its variants. In: Proceedings of CVPR’05 (2005)Google Scholar
  5. 5.
    Deng W., Hu J., Guo J., Zhang H.G.: Comments on\globally maximizing, locally minimizing: unsupervised discriminant projection with application to face and palm biometrics. IEEE Trans Pattern Anal. Mach. Intell. 30(8), 1503–1504 (2008)CrossRefGoogle Scholar
  6. 6.
    Fukunaga K., Mantock J.M.: Nonparametric discriminant analysis. IEEE Trans. Pattern Anal. Mach. Intell. 5(6), 671–678 (1983)zbMATHCrossRefGoogle Scholar
  7. 7.
    Geng X., Zhan D., Zhou Z.H.: Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Trans Syst. Man Cybernet. 35(6), 1098–1107 (2005)CrossRefGoogle Scholar
  8. 8.
    He X., Yan S., Hu Y., Niyogi P., Zhang H.J.: Face recognition using laplacian faces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)CrossRefGoogle Scholar
  9. 9.
    He X., Cai D., Han J.W.: Learning a maximum margin subspace for image retrieval. IEEE Trans. Knowl. Data Eng. 20(2), 189–201 (2008)CrossRefGoogle Scholar
  10. 10.
    Hu, J., Deng, W., Guo, J., Xu, W.: Locality discriminant indexing for document classification. In: Proceedings of ACM SIGIR’07, pp. 689–690 (2007)Google Scholar
  11. 11.
    Roth D., Yang M.H., Ahuja N.: Learning to recognize three-dimensional objects. Neural Comput. 14, 1071–1103 (2002)zbMATHCrossRefGoogle Scholar
  12. 12.
    Roweis S., Saul L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(22), 2323–2326 (2000)CrossRefGoogle Scholar
  13. 13.
    Sim T., Baker S., Bsat M.: The cmu pose, illumination, and expression database. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1615–1618 (2003)CrossRefGoogle Scholar
  14. 14.
    Tenenbaum J., de Silva V., Langford J.: A global geometric framework for nonlinear dimensionality reduction. Science 290(22), 2319–2323 (2000)CrossRefGoogle Scholar
  15. 15.
    Vasconcelos, N., Ho, P., Moreno, P.: The Kullback–Leibler kernel as a framework for discriminant and localized representations for visual recognition. In: Proceedings of Eighth European Conference on Computer Vision, vol. III, pp. 430–441(2004)Google Scholar
  16. 16.
    Vlassis N., Motomura Y., Krose B.: Supervised dimension reduction of intrinsically low dimensional data. Neural Comput. 14(1), 191–215 (2002)zbMATHCrossRefGoogle Scholar
  17. 17.
    Yan S.C., Xu D., Zhang B.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 40–51 (2007)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Yang J., Zhang D., Yang J.Y., Niu B.: Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 650–664 (2007)CrossRefGoogle Scholar
  19. 19.
    Yu W.W., Teng X., Liu C.Q.: Face recognition using discriminant locality preserving projections. Image Vis. Comput. 24, 239–248 (2006)CrossRefGoogle Scholar
  20. 20.
    Zhang, H.-G., Yang, J., Deng, W.H., Guo, J.: Handwritten Chinese character recognition using local discriminant projection with prior information. In: Proceedings of IEEE International Conference on Pattern Recognition (ICPR’08), Florida (2008)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Honggang Zhang
    • 1
    • 2
  • Weihong Deng
    • 1
  • Jun Guo
    • 1
  • Jie Yang
    • 2
  1. 1.School of Information and Communications EngineeringBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations