Advertisement

Machine Vision and Applications

, Volume 22, Issue 1, pp 77–85 | Cite as

Camera distortion self-calibration using the plumb-line constraint and minimal Hough entropy

  • Edward RostenEmail author
  • Rohan Loveland
Original Paper

Abstract

In this paper, we present a simple and robust method for self-correction of camera distortion using single images of scenes which contain straight lines. Since the most common distortion can be modelled as radial distortion, we illustrate the method using the Harris radial distortion model, but the method is applicable to any distortion model. The method is based on transforming the edgels of the distorted image to a 1-D angular Hough space, and optimizing the distortion correction parameters which minimize the entropy of the corresponding normalized histogram. Properly corrected imagery will have fewer curved lines, and therefore less spread in Hough space. Since the method does not rely on any image structure beyond the existence of edgels sharing some common orientations and does not use edge fitting, it is applicable to a wide variety of image types. For instance, it can be applied equally well to images of texture with weak but dominant orientations, or images with strong vanishing points. Finally, the method is performed on both synthetic and real data revealing that it is particularly robust to noise.

Keywords

Radial distortion Camera distortion Plumb-line constraint 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barreto, J.P., Daniilidis, K.: Fundamental matrix for cameras with radial distortion. In: 10th IEEE International Conference on Computer Vision, vol. 1, pp. 625–632. Springer, Beijing (2005)Google Scholar
  2. 2.
    Beyer, H.: Accurate calibration of ccd-cameras. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. pp. 96–101 (1992)Google Scholar
  3. 3.
    Bräuer-Burchardt, C., Voss, K.: Automatic correction of weak radial lens distortion in single views of urban scenes using vanishing points. In: 9th International Conference on Image Processing, vol. 3, pp. 865–868. IEEE Computer Society (2002)Google Scholar
  4. 4.
    Brown D.C.: Close-range camera calibration. Photogramm. Eng. 37, 855–866 (1971)Google Scholar
  5. 5.
    Claus. D., Fitzgibbon, A.: A rational function lens distortion model for general cameras. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 213–219 (2005)Google Scholar
  6. 6.
    Claus, D., Fitzgibbon, A.W.: A plumbline constraint for the rational function lens distortion model. In: Proceedings of the British Machine Vision Conference, pp. 99–108. British Machine Vision Assosciation, Oxford (2005)Google Scholar
  7. 7.
    Devernay, F., Faugeras, O.: Straight lines have to be straight. Mach. Vis. Appl. 13(1) (2001)Google Scholar
  8. 8.
    Drummond T., Cipolla R.: Real-time visual tracking of complex structures. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 932–946 (2002)CrossRefGoogle Scholar
  9. 9.
    Duda R.O., Hart P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)CrossRefGoogle Scholar
  10. 10.
    Eade, E., et al.: Camera calibration in [20]: progs/calib.cxx (2008, CVS tag SNAPSHOT_20080904)Google Scholar
  11. 11.
    Faird H., Popescu A.C.: Blind removal of lens distortion. J. Opt. Soc. Am. A 18(9), 2072–2078 (2001)CrossRefGoogle Scholar
  12. 12.
    Harris, C., Stennett, C.: RAPID, a video rate object tracker. In: 1st British Machine Vision Conference, pp. 73–77. British Machine Vision Assosciation, Oxford (1990)Google Scholar
  13. 13.
    Heikkila J.: Geometric camera calibration using circular control points. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1066–1077 (2000)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Heikkilä, J., Silvén, O.: A four-step camera calibration procedure with implicit image correction. In: 11th IEEE Conference on Computer Vision and Pattern Recognition, pp. 1106–1112. Springer, San Juan, Puerto Rico (1997)Google Scholar
  15. 15.
    Lee M., Medioni G.: Grouping \({\cdot, -, \rightarrow, \bigcirc\hspace{-1ex}-}\) , into regions, curves and junctions. Int. J. Comput. Vis. Image Understand. 76(1), 54–69 (1999)CrossRefGoogle Scholar
  16. 16.
    Lenz, R., Tsai, R.: Techniques for calibration of the scale factor and image center for high accuracy 3-D machine vision metrology. IEEE Trans. Pattern Anal. Mach. Intell. 10(5), 713–720Google Scholar
  17. 17.
    Nelder, J., Mead, R.: Computer Journal 7, 308–313 (1965)Google Scholar
  18. 18.
    Press W.H., Teukolsky S.A., Vetterling W.H., Flannery B.P.: Numerical Recipes in C. Cambridge University Press, Cambridge (1999)Google Scholar
  19. 19.
    Rosten, E., Cox, S.: Accurate extraction of reciprocal space information from transmission electron microscopy images. In: Advances in Visual Computing. LNCS 4292, vol. 1, pp. 373–382 (2006)Google Scholar
  20. 20.
    Rosten, E., Drummond, T., Eade, E., Reitmayr, G., Smith, P., Kemp, C., Georg, K., et al.: libCVD: Cambridge vision dynamics library (2008). http://savannah.nongnu.org/projects/libcvd
  21. 21.
    Sawhney H.S., Kumar R.: True multi-image alignment and its application to mosaicing and lens distortion correction. IEEE Trans. Pattern Anal. Mach. Intell. 21(3), 235–243 (1999)CrossRefGoogle Scholar
  22. 22.
    Shannon, C.M.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)Google Scholar
  23. 23.
    Stein, G.: Accurate internal camera calibration using rotation, with analysis of sources of error. In: 5th IEEE International Conference on Computer Vision, p. 230. Springer, Boston (1995)Google Scholar
  24. 24.
    Stein, G.: Lens distortion calibration using point correspondences. In: 10th IEEE Conference on Computer Vision and Pattern Recognition, p. 602. Springer, San Fransisco (1996)Google Scholar
  25. 25.
    Strand, R., Hayman, E.: Correcting radial distortion by circle fitting. In: 16th British Machine Vision Conference. British Machine Vision Assosciation, Oxford (2005)Google Scholar
  26. 26.
    Swaminathan R., Nayar S.: Nonmetric calibration of wide-angle lenses and polycameras. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1172–1178 (2000)CrossRefGoogle Scholar
  27. 27.
    Tordoff B., Murray D.W.: The impact of radial distortion on the self-calibration of rotating cameras. Comput. Vis. Image Understand. 96(1), 17–34 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Department of EngineeringUniversity of CambridgeCambridgeUK
  3. 3.Department of Engineering ScienceUniversity of OxfordOxfordUK

Personalised recommendations