Machine Vision and Applications

, Volume 21, Issue 6, pp 905–920 | Cite as

A comparative evaluation of interest point detectors and local descriptors for visual SLAM

  • Arturo Gil
  • Oscar Martinez Mozos
  • Monica Ballesta
  • Oscar Reinoso
Original Paper

Abstract

In this paper we compare the behavior of different interest point detectors and descriptors under the conditions needed to be used as landmarks in vision-based simultaneous localization and mapping (SLAM). We evaluate the repeatability of the detectors, as well as the invariance and distinctiveness of the descriptors, under different perceptual conditions using sequences of images representing planar objects as well as 3D scenes. We believe that this information will be useful when selecting an appropriate landmark detector and descriptor for visual SLAM.

Keywords

Interest point detectors Local descriptors Visual landmarks Visual SLAM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arras, K.O.: Feature-based robot navigation in known and unknown environments. Ph.D. thesis, Swiss Federal Institute of Technology Lausanne (EPFL), Thèse No. 2765 (2003)Google Scholar
  2. 2.
    Bay, H., Tuytelaars, T., Gool, L.V.: SURF: Speeded up robust features. In: European Conference on Computer Vision (2006)Google Scholar
  3. 3.
    Biber, P., Andreasson, H., Duckett, T., Schilling, A.: 3D modelling of indoor environments by a mobile robot with a laser scanner and panoramic camera. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2004)Google Scholar
  4. 4.
    Davison A.J., Murray D.W.: Simultaneous localisation and map-building using active vision. IEEE Trans. Pattern Anal. Mach. Intell. 24, 865–880 (2002)CrossRefGoogle Scholar
  5. 5.
    Eustice, R., Singh, H., Leonard, J.: Exactly sparse delayed-state filters. In: IEEE International Conference on Robotics and Automation (2005)Google Scholar
  6. 6.
    Fraundorfer, F., Bischof, H.: A novel performance evaluation method of local detectors on non-planar scenes. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) (2005)Google Scholar
  7. 7.
    Gil, A., Reinoso, O., Burgard, W., Stachniss, C., Martínez Mozos, O.: Improving data association in rao-blackwellized visual SLAM. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2006)Google Scholar
  8. 8.
    Grisetti G., Stachniss C., Burgard W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robotics 23(1), 34–46 (2007)CrossRefGoogle Scholar
  9. 9.
    Hähnel, D., Burgard, W., Fox, D., Thrun, S.: An efficient FastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas (2003)Google Scholar
  10. 10.
    Harris, C.G., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference (1998)Google Scholar
  11. 11.
    Jensfelt, P., Kragic, D., Folkesson, J., Björkman, M.: A framework for vision based bearing only 3D SLAM. In: IEEE International Conference on Robotics and Automation (2006)Google Scholar
  12. 12.
    Kadir, T., Brady, M., Zisserman, A.: An affine invariant method for selecting salient regions in images. In: Proceedings of the 8th European Conference on Computer Vision, pp. 345–457 (2004)Google Scholar
  13. 13.
    Kosecka, J., Zhou, L., Barber, P., Duric, Z.: Qualitative image based localization in indoor environments. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2003)Google Scholar
  14. 14.
    Little, J., Se, S., Lowe, D.: Global localization using distinctive visual features. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2002)Google Scholar
  15. 15.
    Lowe, D.: Object recognition from local scale-invariant features. In: International Conference on Computer Vision (1999)Google Scholar
  16. 16.
    Lowe D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2(60), 91–110 (2004)CrossRefGoogle Scholar
  17. 17.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of the 13th British Machine Vision Conference, pp. 384–393 (2002)Google Scholar
  18. 18.
    Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: International Conference on Computer Vision (2001)Google Scholar
  19. 19.
    Mikolajczyk K., Schmid C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  20. 20.
    Mikolajczyk K., Tuytelaars T., Schmid C., Zisserman A., Matas J., Schaffalitzky F., Kadir T., Van Gool L.: A comparison of affine region detectors. Int. J. Comput. Vis. 65(1/2), 43–72 (2005)CrossRefGoogle Scholar
  21. 21.
    Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: Fastslam: a factored solution to the simultaneous localization and mapping problem. In: Eighteenth national conference on Artificial Intelligence, pp. 593–598. American Association for Artificial Intelligence, Menlo Park (2002)Google Scholar
  22. 22.
    Murillo, A.C., Guerrero, J.J., Sagüés, C.: Surf features for efficient robot localization with omnidirectional images. In: IEEE International Conference on Robotics and Automation (2007)Google Scholar
  23. 23.
    Schmid, C., Mohr, R., Bauckhage, C. (2000). Evaluaton of interest point detectors. Int. J. Comput. Vis. 37(2)Google Scholar
  24. 24.
    Se, S., Lowe, D.G., Little, J.: Vision-based mobile robot localization and mapping using scale-invariant features. In: IEEE International Conference on Robotics and Automation (2001)Google Scholar
  25. 25.
    Sim, R., Elinas, P., Griffin, M., Little, J.: Vision-based slam using the rao-blackwellised particle filter. In: IJCAI Workshop on Reasoning with Uncertainty in Robotics (RUR) (2005)Google Scholar
  26. 26.
    Smith, S.: A new class of corner finder. In: British Machine Vision Conference (1992)Google Scholar
  27. 27.
    Theodoridis S., Koutroumbas K.: Pattern Recognition, 3rd edn. Academic Press, New York (2006)MATHGoogle Scholar
  28. 28.
    Triebel, R., Burgard, W.: Improving simultaneous mapping and localization in 3D using global constraints. In: National Conference on Artificial Intelligence (AAAI) (2005)Google Scholar
  29. 29.
    Valls Miro, J., Zhou, W., Dissanayake, G.: Towards vision based navigation in large indoor environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2006)Google Scholar
  30. 30.
    Zernike F.: Diffraction theory of the cut procedure and its improved form, the phase contrast method. Physica 1, 689–704 (1934)MATHCrossRefGoogle Scholar
  31. 31.
    Zhang Z., Deriche R., Faugeras O., Luong Q.: A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artif. Intell. 78, 87–119 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Arturo Gil
    • 1
  • Oscar Martinez Mozos
    • 2
  • Monica Ballesta
    • 1
  • Oscar Reinoso
    • 1
  1. 1.Department of Industrial Systems EngineeringMiguel Hernández UniversityElcheSpain
  2. 2.Department of Computer ScienceUniversity of FreiburgFreiburg im BreisgauGermany

Personalised recommendations