Machine Vision and Applications

, Volume 21, Issue 5, pp 779–787 | Cite as

A fast connected components labeling algorithm and its application to real-time pupil detection

  • Prasad GabburEmail author
  • Hong Hua
  • Kobus Barnard
Short Paper


We describe a fast connected components labeling algorithm using a region coloring approach. It computes region attributes such as size, moments, and bounding boxes in a single pass through the image. Working in the context of real-time pupil detection for an eye tracking system, we compare the time performance of our algorithm with a contour tracing-based labeling approach and a region coloring method developed for a hardware eye detection system. We find that region attribute extraction performance exceeds that of these comparison methods. Further, labeling each pixel, which requires a second pass through the image, has comparable performance.


Connected components labeling Pupil detection Eye tracking Region coloring Segmentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Amir A., Zimet L., Sangiovanni-Vincentelli A., Kao S.: An embedded system for an eye-detection sensor. Comput. Vis. Image Underst. 98(1), 104–123 (2005)CrossRefGoogle Scholar
  3. 3.
    Ballard D.H., Brown C.M.: Computer Vision. Prentice Hall, NJ (1982)Google Scholar
  4. 4.
    Chang F., Chen C.J., Lu C.J.: A linear-time component-labeling algorithm using contour tracing technique. Comput. Vis. Image Underst. 93(2), 206–220 (2004)CrossRefGoogle Scholar
  5. 5.
    Dillencourt M.B., Samet H., Tamminen M.: A general approach to connected-component labeling for arbitrary image representations. J. ACM 39(2), 253–280 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Doyle J., Rivest R.L.: Linear expected time of a simple union-find algorithm. Inf. Proc. Lett. 5(5), 146–148 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Duchowski A.T.: Eye Tracking Methodology: Theory and Practice. Springer, New York (2001)Google Scholar
  8. 8.
    Ebisawa Y.: Improved video-based eye-gaze detection method. IEEE Trans. Inst. Meas. 47(4), 948–955 (1998)CrossRefGoogle Scholar
  9. 9.
    Haralick R.M.: Real-Time Parallel Computing Image Analysis, chap. Some Neighborhood Operators, pp. 11–35. Plenum Press, New York (1981)Google Scholar
  10. 10.
    Hua H., Krishnaswamy P., Rolland J.P.: Video-based eyetracking methods and algorithms in head-mounted displays. Opt. Express 14(10), 4328–4350 (2006)CrossRefGoogle Scholar
  11. 11.
    Hua H., Pansing C., Rolland J.P.: Modeling of an eye-imaging system for optimizing illumination schemes in an eye-tracked head-mounted display. Appl. Opt. 46(32), 1–14 (2007)Google Scholar
  12. 12.
    Hutchinson T.E., White K.P., Martin W.N., Reichert K.C., Frey L.A.: Human–computer interaction using eye-gaze input. IEEE Trans. Syst. Man. Cybern. 19(6), 1527–1534 (1989)CrossRefGoogle Scholar
  13. 13.
    Kapoor, A., Picard, R.W.: A real-time head nod and shake detector. In: PUI ’01: Proceedings of the 2001 Workshop on Perceptive User interfaces, pp. 1–5 (2001)Google Scholar
  14. 14.
    Lumia R., Shapiro L., Zuniga O.A.: A new connected components algorithm for virtual memory computers. Comput. Vis. Graph. Image Proc. 22(2), 287–300 (1983)CrossRefGoogle Scholar
  15. 15.
    Morimoto C., Koons D., Amir A., Flickner M.: Pupil detection and tracking using multiple light sources. Image Vis. Comput. 18(4), 331–335 (2000)CrossRefGoogle Scholar
  16. 16.
    Rosenfeld A., Pfaltz J.L.: Sequential operations in digital picture processing. J. ACM 13(4), 471–494 (1966)zbMATHCrossRefGoogle Scholar
  17. 17.
    Samal A., Iyengar P.A.: Automatic recognition and analysis of human faces and facial expressions: a survey. Pattern Recogn. 25(1), 65–77 (1992)CrossRefGoogle Scholar
  18. 18.
    Schwiegerling J.: Field Guide to Visual and Ophthalmic Optics. SPIE Press, Bellingham (2004)CrossRefGoogle Scholar
  19. 19.
    di Stefano, L., Bulgarelli, A.: A simple and efficient connected components labeling algorithm. In: Proc. 10th Intl. Conf. Image Anal. Proc., pp. 322–327 (1999)Google Scholar
  20. 20.
    Suzuki, K., Horiba, I., Sugie, N.: Fast connected-component labeling based on sequential local operations in the course of forward raster scan followed by backward raster scan. In: IEEE Intl. Conf. Pattern Recog., vol. 2, pp. 434–437 (2000)Google Scholar
  21. 21.
    Suzuki K., Horiba I., Sugie N.: Linear-time connected-component labeling based on sequential local operations. Comput. Vis. Image Underst. 89(1), 1–23 (2003)zbMATHCrossRefGoogle Scholar
  22. 22.
    Tarjan R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22(2), 215–225 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Wu, K., Otoo, E., Suzuki, K.: Two strategies to speed up connected component labeling algorithms. Tech. Rep. 59102, Lawrence Berkeley National Lab (2005)Google Scholar
  24. 24.
    Zhao, S., Grigat, R.R.: Robust eye detection under active infrared illumination. In: IEEE Intl. Conf. Pattern Recogn., pp. 481–484 (2006)Google Scholar
  25. 25.
    Zhu D., Moore S.T., Raphan T.: Robust pupil center detection using a curvature algorithm. Comput. Methods Programs Biomed. 59(3), 145–157 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.3DVIS Lab, College of Optical SciencesUniversity of ArizonaTucsonUSA
  2. 2.Department of Computer ScienceUniversity of ArizonaTucsonUSA

Personalised recommendations