Machine Vision and Applications

, Volume 21, Issue 3, pp 331–340

3D reconstruction of specular surfaces using a calibrated projector–camera setup

Original Paper

Abstract

Structured light is widely used for shape measurement of beamless surfaces using the triangulation principle. In the case of specular surfaces deflectometry is an appropriate method. Hereby the reflection of a light pattern is observed by a camera. The distortion of the reflected pattern is evaluated to obtain information about the reflecting surface. An important requirement for a 3d reconstruction of a specular surface by deflectometry is a calibrated measurement setup. We propose a method for the overall calibration of a setup consisting of a structured light source, a projection screen and a camera. We consider all extrinsic and intrinsic parameters for the optical mapping including a distortion model for the projector and for the camera, respectively. Given the deflectometric data obtained by the calibrated setup two methods are described which allow the 3d reconstruction of points on a specular surface. This is not trivial as a reconstruction using solely deflectometric data shows ambiguity. In the first method screen displacement between two deflectometric measurements is used to overcome this ambiguity. In the second method curvature-like features on the surface are determined to serve as starting points for a region growing approach. Results of the reconstruction of a specular surface are shown and the performance of the described reconstruction methods are compared to each other.

Keywords

Specular surface Reconstruction Structured light Metric calibration Projector Camera Bundle adjustment Triangulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rferences

  1. 1.
    Bouguet,  J.: Camera calibration toolbox. http://www.vision.caltech.edu/bouguetj/calib_doc (2002)
  2. 2.
    Brown D.: Decentering distortion of lenses. Photom. Eng. 37(8), 855–866 (1966)Google Scholar
  3. 3.
    Fitzgibbon A., Pilu M., Fisher R.B.: Direct least squares fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999)CrossRefGoogle Scholar
  4. 4.
    Heikkil, J., Silven, O.: A four-step camera calibration procedure with implicit image correction. In: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition, pp. 1106–1112. IEEE Computer Society, Washington, DC (1997)Google Scholar
  5. 5.
    Horbach, J.: Verfahren zur optischen 3D-Vermessung spiegelnder Oberflächen. Ph.D. thesis, Institut für Mess- und Regelungtechnik, Universität Karlsruhe (TH) (2008)Google Scholar
  6. 6.
    Horbach J.W., Dang T.: Metric projector camera calibration for measurement applications. In: Huang, P.S. (eds) Two- and Three-dimensional Methods for Inspection and Metrology IV, Proceedings of SPIE, vol. 6382, SPIE, Bellingham (2006)Google Scholar
  7. 7.
    Huynh, D.: Calibration of a structured light system: a projective approach. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 225–230 (1997)Google Scholar
  8. 8.
    Kammel, S.: Deflektometrische Untersuchung spiegelnd reflektierender Freiformflächen. Ph.D. thesis, Institut für Mess- und Regelungtechnik, Universität Karlsruhe (TH) (2004)Google Scholar
  9. 9.
    Kammel S., Horbach J.: Topography reconstruction of specular surfaces. In: Beraldin, J.A., El-Hakim, S.F., Gruen, A., Walton, J.S. (eds) Videometrics VIII, vol. 5665, pp. 59–66. SPIE, Bellingham (2005)Google Scholar
  10. 10.
    Legarda-Sáenz R., Bothe T., Jüptner W.P.: Accurate procedure for the calibration of a structured light system. Opt. Eng. 43(2), 464–471 (2004)CrossRefGoogle Scholar
  11. 11.
    More, J.J.: Numerical Analysis, chap. The Levenberg–Marquardt Algorithm: Implementation and Theory, pp. 105–116. Lecture Notes in Mathematics, vol. 630. Springer, Berlin (1977)Google Scholar
  12. 12.
    Okatani T., Deguchi K.: Autocalibration of a projector–camera system. IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1845–1855 (2005)CrossRefGoogle Scholar
  13. 13.
    Pérard, D.: Automated visual inspection of specular surfaces with structured-lighting reflection techniques. Ph.D. thesis, Institut für Mess- und Regelungtechnik, Universität Karlsruhe (TH) (2000)Google Scholar
  14. 14.
    Petz, M.: Rasterreflexions-Photogrammetrie. Ph.D. thesis, Institut für Produktionsmesstechnik, TU Braunschweig (2006)Google Scholar
  15. 15.
    Tomasi G., van den Berg F., Andersson C.: Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. J. Chemom. 18(5), 231–241 (2004)CrossRefGoogle Scholar
  16. 16.
    Zhang S., Huang P.S.: Novel method for structured light system calibration. Optical Eng. 45(8), 1–8 (2006) 083601Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institut für Mess- und RegelungstechnikUniversity KarlsruheKarlsruheGermany

Personalised recommendations