Machine Vision and Applications

, Volume 21, Issue 2, pp 201–215 | Cite as

Fusing continuous spectral images for face recognition under indoor and outdoor illuminants

Original Paper

Abstract

Novel image fusion approaches, including physics-based weighted fusion, illumination adjustment and rank-based decision level fusion, for spectral face images are proposed for improving face recognition performance compared to conventional images. A new multispectral imaging system is briefly presented which can acquire continuous spectral face images for our concept proof with fine spectral resolution in the visible spectrum. Several experiments are designed and validated by calculating the cumulative match characteristics of probe sets via the well-known recognition engine-FaceIt®. Experimental results demonstrate that proposed fusion methods outperform conventional images when gallery and probes are acquired under different illuminations and with different time lapses. In the case where probe images are acquired outdoors under different daylight situations, the fused images outperform conventional images by up to 78%.

Keywords

Multispectral imaging Face recognition Image fusion Principle component analysis Wavelet transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abidi, B., Huq, S., Abidi, M.: Fusion of visual, thermal, and range as a solution to illumination and pose restrictions in face recognition. IEEE Carnahan Conf. Secur. Technol. 325–330 (2004)Google Scholar
  2. 2.
    Angelopoulou E.: Understanding the color of human skin. Proc. SPIE 4299, 243–251 (2001)CrossRefGoogle Scholar
  3. 3.
    Bebis G., Gyaourova A., Singh S., Pavlidis I.: Face recognition by fusing thermal infrared and visible imagery. Image Vis. Comput. 24, 727–742 (2006)CrossRefGoogle Scholar
  4. 4.
    Chang H., Koschan A., Abidi B., Abidi M.: Physics-based fusion of multispectral data for improved face recognition. in Proc. IEEE ICPR 3, 1083–1086 (2006)Google Scholar
  5. 5.
    Chang, H., Harishwaran, H., Yi, M., Koschan, A., Abidi, B., Abidi, M.: An indoor and outdoor, multimodal, multispectral and multi-illuminant database for face recognition. Proc. IEEE CVPR Workshop Multi-model Biom. 54–61 (2006)Google Scholar
  6. 6.
    Chellappa R., Wilson C., Sirohey S.: Human and machine recognition of faces: A survey. Proc. IEEE 83, 705–740 (1995)CrossRefGoogle Scholar
  7. 7.
    Chen W., Er M.J., Wu S.: Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain. IEEE Trans. Syst. Man Cybern. Part B 36, 458–466 (2006)CrossRefGoogle Scholar
  8. 8.
    Cootes T.F., Edwards G.J., Taylor C.J.: Active appearance models. in Proc. Eur. Conf. Comput. Vis. 2, 484–498 (1998)Google Scholar
  9. 9.
    Dasarathy B.V.: Decision Fusion. IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  10. 10.
    Fairchild, M.D., Rosen, M.R., Johnson, G.M.: Spectral and metameric color imaging. Technical Report, Munsell Color Science Laboratory (2001)Google Scholar
  11. 11.
    Georghiades, A.S., Kriegman, D.J., Belhumeur, P.N.: Illumination cones for recognition under variable lighting: faces. Proc. IEEE CVPR 52–59 (1998)Google Scholar
  12. 12.
    Gonzalez R., Woods R.: Digital Image Processing, 1st edn. Prentice Hall, Englewood Cliffs (2004)Google Scholar
  13. 13.
    Gonzalez-Audicana M., Saleta J.L., Catalan R.G., Garcia R.: Fusion of multispectral and panchromatic images using improved IHS and PCA merges based on wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 42, 1291–1299 (2004)CrossRefGoogle Scholar
  14. 14.
    Gonzalez-Audicana M., Otazu X., Fors X., Alvarez-Mozos O.: A low computational-cost method to fuse IKONOS images using the spectral response function of its sensors. IEEE Trans. Geosci. Remote Sens. 44, 1683–1691 (2006)CrossRefGoogle Scholar
  15. 15.
    Hardeberg J.Y., Schmitt F., Brettel H.: Multispectral image capture using a liquid crystal tunable filters. Opt. Eng. 41, 2532–2548 (2002)CrossRefGoogle Scholar
  16. 16.
    Imai, F.H., Berns, R.S.: High-resolution multispectral image archives: a hybrid approach. Proc. IS&T/ SID Sixth Color Imaging Conf. 224–227 (1998)Google Scholar
  17. 17.
    Imai, F.H., Rosen, M.R., Berns, R.S.: Multi-spectral imaging of a van Gogh’s self-portrait at the National Gallery of Art. Washington, DC. Proc. IS&T PICS, pp. 185–189 (2001)Google Scholar
  18. 18.
    Kong S.G., Heo J., Abidi B.R., Paik J., Abidi M.A.: Recent advances in visual and infrared face recognition—a review. J. Comput. Vis. Image Underst. 97, 103–135 (2005)CrossRefGoogle Scholar
  19. 19.
    Lallier, E., Farooq, M.: A real time pixel-level based image fusion via adaptive weight averaging. Proc. Int. Conf. Inf. Fusion 2, WEC3/3–WEC313 (2000)Google Scholar
  20. 20.
    Liu C., Wechsler H.: A unified bayesian framework for face recognition. Proc. IEEE ICIP 1, 151–155 (1998)Google Scholar
  21. 21.
    Luo R.C., Kay M.G.: Multisensor Integration and Fusion for Intelligent Machines and Systems, Reissue edn. Ablex Publishing, USA (1995)Google Scholar
  22. 22.
    Moghaddam B., Jebara T., Pentland A.: Bayesian face recognition. Pattern Recognit. 33, 1771–1782 (2000)CrossRefGoogle Scholar
  23. 23.
    Ohta N., Takahashi K., Urabe H., Miyagawa T.: Image simulation by use of a laser color printer. O plus E. 22, 57–64 (1981)Google Scholar
  24. 24.
    Pan Z., Healey G., Prasad M., Tromberg B.: Face recognition in hyperspectral images. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1552–1560 (2003)CrossRefGoogle Scholar
  25. 25.
    Pan Z., Healey G., Prasad M., Tromberg B.: Hyperspectral face recognition under variable outdoor illumination. in Proc. SPIE 5425, 520–529 (204)CrossRefGoogle Scholar
  26. 26.
    Pan Z., Healey G., Prasad M., Tromberg B.: Multiband and spectral eigenfaces for face recognition in hyperspectral images. Proc. SPIE 5779, 144–151 (2005)CrossRefGoogle Scholar
  27. 27.
    Phillips P.J., Wechsler H., Huang J., Rauss P.: The FERET database and evaluation procedure for face recognition algorithms. Image Vis. Comput. J. 16, 295–306 (1998)CrossRefGoogle Scholar
  28. 28.
    Phillips P.J., Moon H., Rizvi S.A., Rauss P.J.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1090–1103 (2000)CrossRefGoogle Scholar
  29. 29.
    Phillips, P.J., Grother, P., Micheals, R.J., Blackburn, D.M., Tabassi, E., Bone, J.M.: FRVT 2002: evaluation report [online]. Available: http://www.frvt.org/FRVT2002/documents.htm (2003)
  30. 30.
    Phillips P., Flynn P., Scruggs T., Bowyer K., Chang J., Hoffman K., Marques J., Min J., Worek W.: Overview of the face recognition grand challenge. Proc. IEEE CVPR 1, 947–954 (2005)Google Scholar
  31. 31.
    Pizer S.M., Amburn E.P.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39, 355–368 (1987)CrossRefGoogle Scholar
  32. 32.
    Pohl C., Enderen V.: Multisensor image fusion in remote sensing: concepts methods and applications. Int. J. Remote Sens. 19, 823–854 (1998)CrossRefGoogle Scholar
  33. 33.
    Rosen, M., Jiang, X.: Lippmann2000: a spectral image database under construction. In: Proceedings of International Symposium on Multispectral Imaging and Color Reproduction for Digital Archives, pp. 117–122 (1999)Google Scholar
  34. 34.
    Sadjadi F.: Comparative image fusion analysis. IEEE Comput. Soc. Conf. 3, 20–26 (2005)Google Scholar
  35. 35.
    Shan, S., Gao, W., Cao, B., Zhao, D.: Illumination normalization for robust face recognition against varying lighting conditions. In: Proceedings IEEE Workshop AMFG, pp. 157–164 (2003)Google Scholar
  36. 36.
    Socolinsky D.A., Wolff L.B., Neuheisel J.D., Eveland C.K.: Illumination invariant face recognition using thermal infrared imagery. Proc. IEEE ICPR 1, 527–534 (2001)Google Scholar
  37. 37.
    Toet A., Franken E.M.: Perceptual evaluation of different image fusion schemes. Displays 24, 25–37 (2003)CrossRefGoogle Scholar
  38. 38.
    Tominaga S.: A multi-channel vision system for estimating surface and illuminant functions. J. Opt. Soc. Am. A 13, 2163–2173 (1996)CrossRefGoogle Scholar
  39. 39.
    Wang Z., Ziou D., Armenakis C., Li D., Li Q.: A comparative analysis of image fusion methods. IEEE Trans. Geosci. Remote Sens. 43, 1391–1402 (2005)CrossRefGoogle Scholar
  40. 40.
    Xie X., Lam K.-M.: Face recognition under varying illumination based on a 2D face shape model. Pattern Recognit. 38, 221–230 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Imaging, Robotics and Intelligent Systems (IRIS) LabThe University of Tennessee, KnoxvilleKnoxvilleUSA

Personalised recommendations