Precise ellipse estimation without contour point extraction

  • Jean-Nicolas Ouellet
  • Patrick Hébert
Original Paper


This paper presents a simple linear operator that accurately estimates the parameters of ellipse features. Based on the dual conic model, the operator directly exploits the raw gradient information in the neighborhood of an ellipse’s boundary, thus avoiding the intermediate stage of precisely extracting individual edge points. Moreover, under the dual representation, the dual conic can easily be constrained to a dual ellipse when minimizing the algebraic distance. The new operator is compared to other estimation approaches, including those limited to the center position, in simulation as well as in real situation experiments.


Ellipse targets Conic Dual conic Dual ellipse Geometric fitting Forstner operator 


  1. 1.
    Bookstein F.L.: Fitting conic sections to scattered data. Comput. Graph. Image Process. 9(1), 56–71 (1979)CrossRefGoogle Scholar
  2. 2.
    Cabrera J., Meer P.: Unbiased estimation of ellipses by bootstrapping. IEEE Trans. Pattern Anal. Machine Intell. 18(7), 752–756 (1996)CrossRefGoogle Scholar
  3. 3.
    Fitzgibbon A., Pilu M., Fisher R.B.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Machine Intell. 21(5), 476–480 (1999)CrossRefGoogle Scholar
  4. 4.
    Fitzgibbon, A.W., Fisher, R.B.: A buyer’s guide to conic fitting. In: Proceedings of the 6th British Conference on Machine Vision, vol. 2, pp. 513–522. BMVA Press (1995)Google Scholar
  5. 5.
    Forstner, W., Gulch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proceedings of Intercommission Conference on Fast Processing of Photogrammetric Data, pp. 281–305 (1987)Google Scholar
  6. 6.
    Gander, W., Golub, G.H., Strebel, R.: Fitting of circles and ellipses, least square solution. Technical report 1994TR-217, ETH Zurich, Institute of Scientific Computing (1994)Google Scholar
  7. 7.
    Hartley R.I.: In defense of the eight-point algorithm. IEEE Trans. Pattern Anal. Machine Intell. 19(6), 580–593 (1997)CrossRefGoogle Scholar
  8. 8.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, ISBN: 0521540518 (2004)Google Scholar
  9. 9.
    Heikkila, J.: Moment and curvature preserving technique for accurate ellipse boundary detection. In: Proceedings of the 14th International Conference on Pattern Recognition, vol. 1, p. 734. IEEE Computer Society, Washington, DC, USA (1998)Google Scholar
  10. 10.
    Heikkila J.: Geometric camera calibration using circular control points. IEEE Trans. Pattern Anal. Machine Intell. 22(10), 1066–1077 (2000)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kanatani K.: Geometric Computation for Machine Vision. Oxford University Press, Inc., New York (1993)MATHGoogle Scholar
  12. 12.
    Kanatani K.: Statistical bias of conic fitting and renormalization. IEEE Trans. Pattern Anal. Machine Intell. 16(3), 320–326 (1994)MATHCrossRefGoogle Scholar
  13. 13.
    Kanatani, K.: Ellipse fitting with hyperaccuracy. IEICE Trans. Inf. Syst. E89-D(10), 2653–2660 (2006). doi: 10.1093/ietisy/e89-d.10.2653
  14. 14.
    Otsu N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Ouellet, J.N., Hebert, P.: A simple operator for very precise estimation of ellipses. In: CRV ’07: Proceedings of the 4th Canadian Conference on Computer and Robot Vision, pp. 21–28. IEEE Computer Society, Washington, DC, USA (2007)Google Scholar
  16. 16.
    Rosin P.L.: Assessing error of fit functions for ellipses. Graph. Models Image Process. GMIP 58(5), 494–502 (1996)CrossRefGoogle Scholar
  17. 17.
    Safaee-Rad R., Tchoukanov I., Benhabib B., Smith K.C.: Accurate parameter estimation of quadratic curves from grey-level images. CVGIP Image Understand. 54(2), 259–274 (1991)MATHCrossRefGoogle Scholar
  18. 18.
    Szeliski, R., Kang, S.B.: Direct method for visual scene reconstruction. In: Proceedings of the IEEE Workshop on Representation of Visual Scenes, pp. 26–33. IEEE Computer Society, Washington, DC, USA (1995)Google Scholar
  19. 19.
    Tabatabai A., Mitchell O.: Edge location to subpixel values in digital imagery. IEEE Trans. Pattern Anal. Machine Intell. 6(2), 188–200 (1984)CrossRefGoogle Scholar
  20. 20.
    Trucco, E., Verri, A.: Introductory Techniques for 3-D Computer Vision. Prentice Hall PTR, Upper Saddle River (1998)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Electrical & Computer EngineeringLaval UniversityQuebecCanada

Personalised recommendations