Advertisement

On-line modeling for real-time 3D target tracking

  • Hans de Ruiter
  • Beno Benhabib
Original Paper
  • 146 Downloads

Abstract

Model-based object tracking can provide autonomous mobile robotic systems with real-time 6-dof pose information, for example, enabling them to rendezvous with targets from a particular desired direction. Most existing model-based trackers, however, require the geometric model of the target to be known a priori, which may pose a practical problem in real-world environments. This paper presents a novel 3D modeler capable of building an approximate model of a target object on-line. The proposed technique rapidly constructs a 3D tessellated enveloping mesh and uses projective texture mapping to further model the target object’s surface features. Separation of the target object from background clutter is achieved via customizable interest filters. The resulting real-time object-tracking system was tested extensively via simulations and experiments.

Keywords

Real-time modeling Object tracking Pose estimation 

References

  1. 1.
    Yang, Q., Wang, L., Yang, R., Wang, S., Liao, M., Nistér D.: Real-time global stereo matching using hierarchical belief propagation. In: Proc. British Machine Vision Conf., vol. 3, pp. 989-998. Edinburgh, UK (2006)Google Scholar
  2. 2.
    Alvarez, L., Deriche, R., Sánchez, J., Weickert, J.: Dense disparity map estimation respecting image discontinuities: A PDE and scale-space based approach (2000)Google Scholar
  3. 3.
    Bhanu, B., Lee, S., Das, S.: Adaptive image segmentation using genetic and hybrid search methods. IEEE Trans. Aerospace Electron. Syst. 31(4), 1268–1291 (1995)CrossRefGoogle Scholar
  4. 4.
    Cadman, L., Tjahjadi, T.: Simultaneous feature tracking and three-dimensional object reconstruction from an image sequence. In: Int. Conf. on Image Processing, vol. 2, pp. 391–394. Thessaloniki (2001)Google Scholar
  5. 5.
    Cascia, M.L., Scarloff, S., Athitsos, V.: Fast, realiable head tracking under varying illumination: An approach based on registration of texture-mapped 3d models. IEEE Trans. Pattern Anal. Mach. Intell. 22(4), 322–336 (2000)CrossRefGoogle Scholar
  6. 6.
    Collins, G., Dennis, L.: A system for video surveillance and monitoring. In: Int. Conf. on Automated Deduction, pp. 497–501. Pittsburgh (2000)Google Scholar
  7. 7.
    Comport, A., Marchand, E., Chaumette, F.: A real-time tracker for markerless augmented reality. In: IEEE and ACM Int. Symposium on Mixed and Augmented Reality, pp. 36–45. Tokyo (2003)Google Scholar
  8. 8.
    Comport, A., Marchand, E., Pressigout, M., Chaumette, F.: Real-time markerless tracking for augmented reality: the virtual visual servoing framework. IEEE Trans. Vis. Comput. Graphics 12(4), 615–628 (2006)CrossRefGoogle Scholar
  9. 9.
    Dankers, A., Zelinsky, A.: CeDAR: a real-world vision system. Mach. Vis. Appl. 16(1), 47–58 (2004)CrossRefGoogle Scholar
  10. 10.
    Davison, A.: Real-time simultaneous localisation and mapping with a single camera. In: International Conference on Computer Vision, pp. 1403–1410. Nice (2003)Google Scholar
  11. 11.
    de Ruiter, H., Benhabib, B.: Colour-gradient redundancy for real-time spatial pose tracking in autonomous robot navigation. In: Canadian Conf. on Computer and Robotic Vision, pp. 20–28. Québec City (2006)Google Scholar
  12. 12.
    Drummond, T., Cipolla, R.: Real-time visual tracking of complex scenes. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 932–946 (2002)CrossRefGoogle Scholar
  13. 13.
    Everitt, C.: Projective texture mapping (2006). http://developer.nvidia.com/object/Projective_Texture_Mapping%.html
  14. 14.
    Franco, J.S., Ménier, C., Boyer, E., Raffin, B.: A distributed approach for real time 3D modeling. In: IEEE Workshop on Real Time 3D Sensors and Their Use. Washington DC (2004)Google Scholar
  15. 15.
    Goulermas, J., Liatsis, P., Fernando, T.: A constrained nonlinear energy minimization framework for the regularization of the stereo correspondence problem. IEEE Trans. Circuits Syst. Video Technol. 15(4), 550–565 (2005)CrossRefGoogle Scholar
  16. 16.
    Hager, G.D., Belhumeur, P.N.: Real-time tracking of image regions with changes in geometry and illumination. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 403–410. San Francisco (1996)Google Scholar
  17. 17.
    Han, M., Xu, W., Tao, H., Gong, Y.: An algorithm for multiple object trajectory tracking. In: IEEE Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. 864–871. Washington (2004)Google Scholar
  18. 18.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: 4th Alvey Vision Conf., vol. 15, pp. 141–151. Manchester (1988)Google Scholar
  19. 19.
    Isard, M., Blake, A.: Condensation—conditional density propagation for visual tracking. Int. J. Comput. Vis. 29(1), 5–28 (1998)CrossRefGoogle Scholar
  20. 20.
    Jurie, F., Dhome, M.: Real time robust template matching. In: 13th British Machine Vision Conf., pp. 123–132. Cardiff (2002)Google Scholar
  21. 21.
    Kahl, F., August, J.: Multi-view reconstruction of space curves. In: 9th IEEE Int. Conf. on Computer Vision, vol. 2, pp. 1017–1024 (2003)Google Scholar
  22. 22.
    Kim, S., Kweon, I.: Robust model-based 3d object recognition by combining feature matching with tracking. In: Int. Conf. on Robotics and Automation, vol. 2, pp. 2123–2128. Taipei (2003)Google Scholar
  23. 23.
    Krahnstoever, N., Sharma, R.: Appearance management and cue fusion for 3d model-based tracking. In: Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 249–254. Madison (2003)Google Scholar
  24. 24.
    Kutulakos, K.N.: Approximate n-view stereo. In: 7th European Conf. on Computer Vision, pp. 67–83. Dublin (2000)Google Scholar
  25. 25.
    Kyrki, V., Kragic, D.: Integration of model-based and model-free cues for visual object tracking in 3d. In: Int. Conf. on Robotics and Automation, pp. 1554–1560. Barcelona (2005)Google Scholar
  26. 26.
    Lee, S., Jang, D., Kim, E., Hong, S., Han, J.: A real-time 3d workspace modeling with stereo camera. In: Int. Conf. on Robots and Systems, pp. 2140–2147. Edmonton (2005)Google Scholar
  27. 27.
    Lowe, D.: Fitting parameterized three-dimensional models to images. IEEE Trans. Pattern Anal. Mach. Intell. 13(5), 441–450 (1991)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Lucas, B., Kanade, T.: An iterative image registration technique with application to stereo vision. In: 7th Int. Joint Conf. on Artificial Intelligence, pp. 674–479. Vancouver (1981)Google Scholar
  29. 29.
    Marchand, E., Bouthemy, P., Chaumette, F.: A 2d–3d model-baed approach to real-time visual tracking. Image Vis. Comput. 19(7), 941–955 (2001)CrossRefGoogle Scholar
  30. 30.
    Martin, F., Horaud, R.: Multiple-camera tracking of rigid objects. Int. J. Robot. Res. 21(2), 97–113 (2002)CrossRefGoogle Scholar
  31. 31.
    McKenna, S., Jabri, S., Duric, Z., Wechsler, H.: Tracking interacting people. In: 4th IEEE Int. Conf. on Automatic Face and Gesture Recognition, pp. 348–353. Grenoble (2000)Google Scholar
  32. 32.
    Moyung, T.J., Fieguth, P.: Incremental shape reconstruction using stereo image sequences. In: Int. Conf. on Image Processing, vol. 2, pp. 752–755. Vancouver (2000)Google Scholar
  33. 33.
    Mulayim, A., Yilmaz, U., Atalay, V.: Silhouette-based 3-d model reconstruction from multiple images. IEEE Trans. Syst. Man Cybern. B Cybern. 33(4), 582–591 (2003)CrossRefGoogle Scholar
  34. 34.
    Pedrini, H.: Modeling dense range images through fast polygonal approaches. In: 11th Conf. on Image Analysis & Processing, pp. 448–453. Palermo (2001)Google Scholar
  35. 35.
    de Ruiter, H., Benhabib, B.: Tracking of rigid bodies for autonomous surveillance. In: IEEE Int. Conf. on Mechatronics and Automation, vol. 2, pp. 928–933. Niagara Falls (2005)Google Scholar
  36. 36.
    de Ruiter, H., Benhabib, B.: Real-time visual vehicle tracking for autonomous convoy control. In: Int. Conf. on Autonomous Robots and Agents, pp. 195–200. Palmerston North (2006)Google Scholar
  37. 37.
    Schenker, P., Huntsberger, T., Pirjanian, P., Baumgartner, E., Tunstel, E.: Planetary rover developments supporting mars exploration, sample return and future human-robotic colonization. Auton. Robots 13(2–3), 103–126 (2003)CrossRefGoogle Scholar
  38. 38.
    Schneiderman, H., Nashman, M., Wavering, A., Lumia, R.: Vision-based robotic convoy driving. Mach. Vis. Appl. 8(6), 359–364 (1995)Google Scholar
  39. 39.
    Shreiner, D. (eds): OpenGL Reference Manual, 4th edn. Addison-Wesley, Boston (2004)Google Scholar
  40. 40.
    Simard, P., Ferrie, F.: Image-based model updating. In: 13th British Machine Vision Conf., pp. 193–202. Cardiff (2002)Google Scholar
  41. 41.
    Sugar, T., McBeath, M., Suluh, A., Mundhra, K.: Mobile robot interception using human navigational principles: Comparison of active versus passive tracking algorithms. Auton. Robots 21(1), 43–54 (2006)CrossRefGoogle Scholar
  42. 42.
    Vincze, M., Ayromlou, M., Beltran, C., Gasteratos, A., Hoffgaard, S., Madsen, O., Ponweiser, W., Zillich, M.: A system to navigate a robot into a ship structure. Mach. Vis. Appl. 14(1), 15–25 (2003)CrossRefGoogle Scholar
  43. 43.
    Vincze, M., Schlemmer, M., Gemeiner, P., Ayromlou, M.: Vision for robotics: a tool for model-based object tracking. IEEE Robotics Autom. Mag. 12(4), 53–64 (2005)CrossRefGoogle Scholar
  44. 44.
    Wang, L., Gong, M., Gong, M., Yang, R.: How far can we go with local optimization in teal-time stereo matching. In: Proc. International Symposium on 3D Data Processing, Visualization, and Transmission, pp. 129–136. Chapel Hill (2006)Google Scholar
  45. 45.
    Wang, S., Siskind, J.: Image segmentation with ratio cut. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 675–690 (2003)CrossRefGoogle Scholar
  46. 46.
    Webber, J., Malik, J.: Robust computation of optical flow in a multi-scale differential framework. In: 4th Int. Conf. on Computer Vision, pp. 12–20. Berlin (1993)Google Scholar
  47. 47.
    Yang, R., Welch, G., Bishop, G.: Real-time consensus-based scene reconstruction using commodity graphics hardware. In: 10th Pacific Conf. on Computer Graphics and Applications, pp. 225–234. Beijing (2002)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations